2010 – 2011 Log1 Contest Round 2 Theta Equations and Inequalities

Name:	
-------	--

	4 points each		
1	Solve for x: 5(x-2)-(x-4)=3(x-1)-2(x+1)		
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?		
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?		
4	One solution to the equation $x^2 - 3x + 1 = 0$ is $\frac{3 - \sqrt{5}}{2}$, what is the other solution?		
5	Find $(f \circ g)(-3)$ if $f(x) = \sqrt{x+16}$ and $g(x) = 3x^2 - 2x + 15$.		

	5 points each		
6	How many integers are solutions to $ 2x+1 \le 5$?		
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?		
8	Find the inverse of $y = \sqrt{2 - 7x}$, when $x \le \frac{2}{7}$.		
9	If $9^x = 7$ and $7^y = 3$, what is xy ?		
10	What is the equation of a line perpendicular to $3x - 2y = 12$ that goes through the point (-2, 4)? State answer in the form of $Ax + By = C$.		

	6 points each		
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$.		
12	Solve for a: $9^{a+4} = 81^{2a-3}$		
13	Find the value of x: $4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$		
14	If $\frac{7x-5}{x^2-2x-3} = \frac{A}{x+1} + \frac{B}{x-3}$, find $B-A$.		
15	For what values of x is: $\frac{x-1}{x+2} < \frac{x+2}{x-1}$?		

2010 – 2011 Log1 Contest Round 2 Alpha Equations and Inequalities

Name:		
maine.		

	4 points each		
1	Solve for x: 5(x-2)-(x-4)=3(x-1)-2(x+1)		
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?		
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?		
4	What is the discriminant of the equation $5x^2 - 9x + 3 = 0$?		
5	Find $(f \circ g)(-3)$ if $f(x) = \sqrt{x+16}$ and $g(x) = 3x^2 - 2x + 15$.		

	5 points each	
6	How many integers are solutions to $ 2x+1 \le 5$?	
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?	
8	Find the inverse of $y = \sqrt{2 - 7x}$, when $x \le \frac{2}{7}$.	
9	Solve for x:	
	$\log_2 x + \log_4 x^2 = 8$	
10	What is the equation of a line perpendicular to $3x - 2y = 12$ that goes through the point (-2, 4)? State answer in the form of $Ax + By = C$.	

	6 points each		
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$.		
12	Solve for a: $9^{a+4} = 81^{2a-3}$		
13	Find the value of x: $4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$		
14	Find the area of the ellipse: $9x^2 + 4y^2 - 18x - 16y - 11 = 0$		
15	For what values of x is: $\frac{x-1}{x+2} < \frac{x+2}{x-1}$?		

2010 – 2011 Log1 Contest Round 2 Mu Equations and Inequalities

Name:	
ivallic.	

	4 points each		
1	Solve for x: 5(x-2) - (x-4) = 3(x-1) - 2(x+1)		
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?		
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?		
4	What is the discriminant of the equation $5x^2 - 9x + 3 = 0$?		
5	If the height of a ball at any time t, in seconds, between 0 and 3 seconds is given by: $h(t) = -16t^2 + 25t + 600$, when is the speed of the ball equal to zero over this interval?		

	5 points each		
6	How many integers are solutions to $ 2x+1 \le 5$?		
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?		
8	Find the inverse of $y = \sqrt{2 - 7x}$, when $x \le \frac{2}{7}$.		
9	Solve for x:		
	$\log_2 x + \log_4 x^2 = 8$		
10	What is the equation of the line tangent to the curve $x^2 + y^2 = 5$ at the point $(-2,1)$? State answer in the form of $Ax + By = C$.		

	6 points each		
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$.		
12	Solve for a: $9^{a+4} = 81^{2a-3}$		
13	Find the value of x:		
	$4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$		
14	Find the area of the ellipse:		
	$9x^2 + 4y^2 - 18x - 16y - 11 = 0$		
15	Solve for t, if $\lim_{x \to t} \frac{e^x - e^t}{x - t} = 5$.		

2010 – 2011 Log1 Contest Round 2 Theta Equations and Inequalities

Name:

	4 points each			
1	Solve for x: 5(x-2)-(x-4)=3(x-1)-2(x+1)	$[x=] \frac{1}{3}$		
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?	16		
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?	<u>17</u> 12		
4	One solution to the equation $x^2 - 3x + 1 = 0$ is $\frac{3 - \sqrt{5}}{2}$, what is the other solution?	$\frac{3+\sqrt{5}}{2}$		
5	Find $(f \circ g)(-3)$ if $f(x) = \sqrt{x+16}$ and $g(x) = 3x^2 - 2x + 15$.	8		

	5 points each				
6	How many integers are solutions to $ 2x+1 \le 5$?	6			
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?	[x=] 20			
8	Find the inverse of $y = \sqrt{2 - 7x}$, when $x \le \frac{2}{7}$.	$y = \frac{2 - x^2}{7}$			
9	If $9^x = 7$ and $7^y = 3$, what is xy ?	1/2			
10	What is the equation of a line perpendicular to $3x - 2y = 12$ that goes through the point (-2, 4)? State answer in the form of $Ax + By = C$.	2x + 3y = 8			

	6 points each		
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$?	[x=] 28	
12	Solve for a: $9^{a+4} = 81^{2a-3}$	[a=] $\frac{10}{3}$	
13	Find the value of x: $4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$	[x=] 48	
14	If $\frac{7x-5}{x^2-2x-3} = \frac{A}{x+1} + \frac{B}{x-3}$, find $B-A$.	1	
15	For what values of x is: $\frac{x-1}{x+2} < \frac{x+2}{x-1}$?	x>1 union -2 < x < -1/2	

2010 – 2011 Log1 Contest Round 2 Alpha Equations and Inequalities

Namai		
Name:		

	4 points each				
1	Solve for x: 5(x-2)-(x-4)=3(x-1)-2(x+1)	$[x=] \frac{1}{3}$			
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?	16			
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?	17 12			
4	What is the discriminant of the equation $5x^2 - 9x + 3 = 0$?	21			
5	Find $(f \circ g)(-3)$ if $f(x) = \sqrt{x+16}$ and $g(x) = 3x^2 - 2x + 15$.	8			

	5 points each			
6	How many integers are solutions to $ 2x+1 \le 5$?	6		
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?	[x=] 20		
8	Find the inverse of $y = \sqrt{2 - 7x}$, when $x \le \frac{2}{7}$.	$y = \frac{2 - x^2}{7}$		
9	Solve for x:	16		
	$\log_2 x + \log_4 x^2 = 8$			
10	What is the equation of a line perpendicular to $3x - 2y = 12$ that goes through the point (-2, 4)? State answer in the form of $Ax + By = C$.	2x + 3y = 8		

	6 points each				
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$?	[x=] 28			
Solve for a: $9^{a+4} = 81^{2a-3}$ [a=] $\frac{10}{3}$					
13	Find the value of x: $4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$	[x=] 48			
14	Find the area of the ellipse: $9x^2 + 4y^2 - 18x - 16y - 11 = 0$	6π			
15	For what values of x is: $\frac{x-1}{x+2} < \frac{x+2}{x-1}$?	x>1 union -2 < x < -1/2			

2010 – 2011 Log1 Contest Round 2 Mu Equations and Inequalities

Name: _____

	4 points each			
1	Solve for x: 5(x-2)-(x-4)=3(x-1)-2(x+1)	$[x=] \frac{1}{3}$		
2	Bertha has a strange farm that only has zebras and ostriches. When she looks out to the field she counts 35 heads and 102 legs. How many zebras does she have?	16		
3	What is the sum of the roots of $x(2-3x)(4x^2-3x+5)=0$?	<u>17</u> 12		
4	What is the discriminant of the equation $5x^2 - 9x + 3 = 0$?	21		
5	If the height of a ball at any time t, in seconds, between 0 and 3 seconds is given by: $h(t) = -16t^2 + 25t + 600$, when is the speed of the ball equal to zero over this interval?	$\frac{25}{32}$ [secs]		

	5 points each			
6	How many integers are solutions to $ 2x+1 \le 5$?	6		
7	If y is inversely proportional to the square of x , and $y = 1/2$ when $x = 10$, then what is x , greater than 0, when $y = 1/8$?	[x=] 20		
8	Find the inverse of $y = \sqrt{2-7x}$, when $x \le \frac{2}{7}$.	$y = \frac{2 - x^2}{7}$		
9	Solve for x:	16		
	$\log_2 x + \log_4 x^2 = 8$			
10	What is the equation of the line tangent to the curve $x^2 + y^2 = 5$ at the point $(-2,1)$? State answer in the form of $Ax + By = C$.	2x - y = -5		

	6 points each		
11	Find the value of x: $\sqrt{2x + \sqrt{2x + \sqrt{2x + \dots}}} = 8$?	[x=] 28	
12	Solve for a: $9^{a+4} = 81^{2a-3}$	[a=] $\frac{10}{3}$	
13	Find the value of x: $4 = 1 + \frac{\sqrt{3x}}{1 + \frac{\sqrt{3x}}{1 + \dots}}$	[x=] 48	
14	Find the area of the ellipse: $9x^2 + 4y^2 - 18x - 16y - 11 = 0$	6π	
15	Solve for t, if $\lim_{x \to t} \frac{e^x - e^t}{x - t} = 5$.	ln 5	

2010 – 2011 Log1 Contest Round 2 Equations and Inequalities Solutions

Mu	Al	Th	Solution
1	1	1	5(x-2)-(x-4)=3(x-1)-2(x+1)
			5x - 10 - x + 4 = 3x - 3 - 2x - 2
			3x = 1
			$x = \frac{1}{3}$
2	2	2	A zebra has one head and four legs, and an ostrich has one head and two legs, so the equation is set up as:
			2Z = 38 $Z = 16$
3	3	3	$x(2-3x)(4x^2+5-3x) =$
			$(2x-3x^2)(4x^2-3x+5) =$ $8x^3-6x^2+10x-12x^4+9x^3-15x^2 =$ $-12x^4+17x^3-21x^2+10x$ Sum of roots is $-\frac{b}{a}$ so the answer is $\frac{17}{12}$. Of course, two of the roots are clearly 0 and 2/3. So we could just add the sum of the roots from the quadratic term 3/4.
4	4		Discriminant is $b^2 - 4ac$, so in this case, it is $(-9)^2 - 4(5)(3) = 81 - 60 = 21$
		4	The product of the solutions must be 1, the other solution will just invert the sign in front of the square root. $\frac{3+\sqrt{5}}{2}$
5			One can solve this as the vertex of a parabola, or simply find the speed function. $s(t) = h'(t) = -32t + 25 = 0$ $t = \frac{25}{32}$
	5	5	$(f \circ g)(-3) = f(g(-3)) =$ $\sqrt{(3(-3)^2 - 2(-3) + 15) + 16} =$ $\sqrt{27 + 6 + 15 + 16} = \sqrt{64} = 8$

1			$-5 \le 2x + 1 \le 5$
			$-6 \le 2x \le 4$
			$-3 \le x \le 2$
			x:{-3,-2,-1,0,1,2}
			There are six integers in the solution set.
7	7	7	$y = \frac{k}{x^2}$
			$\frac{1}{2} = \frac{k}{10^2}$
			50 = <i>k</i>
			$\frac{1}{8} = \frac{50}{x^2}$
			••
			$x^2 = 400$
		-	x = 20
8	8	8	$x = \sqrt{2 - 7y}$
			$x^2 = (\sqrt{2-7y})^2$
			$x^2 = 2 - 7y$
			$7y = 2 - x^2$
			$y = \frac{2 - x^2}{7}$
			y = 7
9	9		$\log_2 x + \log_4 x^2 = 8$
			$\frac{\log_4 x}{\log_4 2} + \frac{\log_4 x^2}{\log_4 4} = 8$
			$\frac{\log_4 2}{\log_4 4} + \frac{\log_4 4}{\log_4 4} = 8$
			$\frac{\log_4 x}{1} + \log_4 x^2 = 8$
			$\frac{1}{2}$
			$2\log_4 x + \log_4 x^2 = 8$
			$2\log_4 x + 2\log_4 x = 8$
			$4\log_4 x = 8$
			$\log_4 x = 2$
			$x = 4^2 = 16$
		9	$3^{1} = 7^{\nu} = (9^{x})^{\nu} = ((3^{2})^{x})^{\nu} = 3^{2xy}$
			1 = 2xy
			xy = 1/2
10			The curve is just a circle centered at the origin, so the tangent line will be perpendicular to the line from the origin to $(-2,1)$ which has slope $-1/2$. The line will have slope 2, thus $y=2x+5$. Re-arranging the terms $2x-y=-5$. $-2x+y=5$ is also acceptable.

	10	10	$3x - 2y = 12 \Rightarrow y = \frac{3x - 12}{2}$
			Slope of perpendicular line is $-\frac{2}{3}$.
			Equation of line with slope $-\frac{2}{3}$ through
			$(-2, 4):$ $y - 4 = -\frac{2}{3}(x + 2)$
			$y = -\frac{2}{3}x - \frac{4}{3} + 4$
			3y = -2x - 4 + 12
			2x + 3y = 8
11	11	11	$(\sqrt{2x+\sqrt{2x+\sqrt{2x+}}})^2 = 8^2$
			$2x + \sqrt{2x + \sqrt{2x + \dots}} = 64$
			2x + 8 = 64
			2x = 56
12	12	12	x = 28
12	12	12	$3^{2(a+4)} = 3^{4(2a-3)}$
			2(a + 4) = 4(2a - 3) $2a + 8 = 8a - 12$
			20 = 6a
			$a = \frac{10}{3}$
13	13	13	$4 = 1 + \frac{\sqrt{3x}}{\sqrt{x}}$
			$1+\frac{\sqrt{3x}}{1+\sqrt{3x}}$
			1+
			$4(4) = 4(1 + \frac{\sqrt{3x}}{4})$
			$16 = 4 + \sqrt{3x}$
			$12^2 = (\sqrt{3x})^2$
			144 = 3x
			x = 48
14	14		Rearrange equation and complete the square twice to get standard form of ellipse:
			$9x^2 - 18x + 4y^2 - 16y = 11$
			$9(x^2 - 2x) + 4(y^2 - 4y) = 11$
			$9(x-1)^2 + 4(y-2)^2 = 11 + 9 + 16$
			$9(x-1)^2 + 4(y-2)^2 = 36$
			$\frac{(x-1)^2}{4} + \frac{(y-2)^2}{9} = 1$
			Area of ellipse is $r_1r_2\pi$ where r_1 is one-half the length of one axis and r_2 is one-half
			the length of the other axis, so $A = \sqrt{4}\sqrt{9}\pi = 6\pi$
		<u> </u>	G

		14	$\frac{7x-5}{x^2-2x-3} = \frac{A(x-3)}{x^2-2x-3} + \frac{B(x+1)}{x^2-2x-3}$ $7x-5 = A(x-3) + B(x+1)$ Let $x = 3$ $7(3) - 5 = A(3-3) + B(3+1)$ $16 = A(0) + 4B$ $B = 4$ Let $x = -1$ $7(-1) - 5 = A(-1-3) + B(-1+1)$ $-7 - 5 = -4A + B(0)$ $A = 3$ $B - A = 1$
15			The limit is simply the derivative of e^x evaluated at t. The equation becomes $e^t=5$ with solution $\ln 5$.
	15	15	The temptation to cross-multiply must be avoided. Instead subtract one side from the other and simplify. $\frac{x+2}{x-1} - \frac{x-1}{x+2} > 0$ $\frac{3(2x+1)}{(x-1)(x+2)} > 0$ Either all three terms are positive or exactly two are negative. So, either x > 1 (all positive) or -2 <x<-1 2="" 2x+1="" and="" makes="" negative.<="" td="" which="" x-1=""></x<-1>