2012 – 2013 Log1 Contest Round 1 Theta Matrices

5 points each	
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,
	(-1,-5), and $(3,-3)$?
7	Find the trace of the matrix $ \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} $
8	Find the inverse of $\begin{bmatrix} -2 & 12 \\ 0 & 4 \end{bmatrix}$, with entries written as decimals.
9	How many entries in the product $\begin{bmatrix} -3 & 7 \\ -2 & 0 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} 0 & 4 & 4 & -3 & 1 \\ 1 & -2 & 0 & 2 & 1 \end{bmatrix}$ are not equal to 0?
10	When using Cramer's Rule on the system $\begin{cases} 2x+3y=117\\ -2x+5y=40 \end{cases}$, the solution for x can be written as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the product
	ab.

	6 points each	
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$	
12	Find the element in the third row and second column for the inverse of the matrix $ \begin{bmatrix} 2 & 3 & 5 \\ 4 & -6 & 1 \\ -1 & 4 & 1 \end{bmatrix} $	
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of A_2 , A_3 , A_4 ,, A_n ,, where $n \ge 2$. Find the minimum value of all such determinants.	
14	If <i>A</i> , <i>B</i> , <i>C</i> , and <i>D</i> have dimensions of 2×6, 3×4, 2×3, and 6×4, respectively, which of the following is not a square matrix: $AD(CB)^{T}$, $(CB)^{T}AD$, $B^{T}B(AD)^{T}$, or $(A^{T}ADD^{T})^{T}$?	
15	What value of x makes the matrix $\begin{bmatrix} 4 & -2 & 1 \\ 3 & x & -6 \\ 2 & 5 & -3 \end{bmatrix}$ singular?	

2012 – 2013 Log1 Contest Round 1 Alpha Matrices

	4 points each	
1	Evaluate: $2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix}$	
2	Evaluate: $\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix}$	
3	Solve for $x: \begin{bmatrix} x & 2 & 3 \\ 7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 61 \end{bmatrix}$	
4	Solve for $x: \begin{vmatrix} x & -6 & 2 \\ 7 & 1 & 0 \\ 1 & 3 & 5 \end{vmatrix} = 250$	
5	A matrix A is called idempotent if $A^2 = A$. If A is a 3×3 idempotent invertible matrix, find A.	

	5 points each	
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,	
	(-1,-5), and $(3,-3)$?	
7	Find the trace of the matrix \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} .	
8	Find the projection of the vector $\begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}$ onto the vector $\begin{bmatrix} -4 \\ -5 \\ 3 \end{bmatrix}$, with the vector written as a column vector and with entries written in decimal form	
9	Find the value of the dot product $\begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -17 \\ 1.5 \\ 6 \end{bmatrix}$.	
10	When using Cramer's Rule on the system $\begin{cases} 2x+3y=117\\ -2x+5y=40 \end{cases}$, the solution for x can be written as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the product	
	ab.	

	6 points each	
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$.	
12	Find the element in the third row and second column for the inverse of the matrix $ \begin{bmatrix} 2 & 3 & 5 \\ 4 & -6 & 1 \\ -1 & 4 & 1 \end{bmatrix} $	
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of A_2 , A_3 , A_4 , \dots , A_6 , \dots , where $n \ge 2$. Find the minimum value of all such determinants.	
14	Find the cross product, written as a column vector: $\begin{bmatrix} 2\\5\\11 \end{bmatrix} \times \begin{bmatrix} 7\\3\\13 \end{bmatrix}$	
15	What value of x makes the matrix $\begin{bmatrix} 4 & -2 & 1 \\ 3 & x & -6 \\ 2 & 5 & -3 \end{bmatrix}$ singular?	

2012 – 2013 Log1 Contest Round 1 Mu Matrices

i	4 points each	
1	Evaluate: $2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix}$	
2	Evaluate: $\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix}$	
3	Solve for $x : \begin{bmatrix} x & 2 & 3 \\ 7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 61 \end{bmatrix}$	
4	Consider matrix $A = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$. <i>A</i> rotates point (x, y) counterclockwise about	
	the origin by some angle $ heta$ (in degrees) to point (a,b) by considering the equation	
	$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}.$ If θ is the least such positive such angle, find θ .	
5	A matrix A is called idempotent if $A^2 = A$. If A is a 3×3 idempotent invertible matrix, find A.	

	5 points each
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,
	(-1,-5), and $(3,-3)$?
7	Find the trace of the matrix $ \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} $
8	Find the positive value of <i>a</i> that makes the vectors $\begin{bmatrix} 2\\5\\-1\\-5 \end{bmatrix} \text{ and } \begin{bmatrix} a^2\\-a\\2\\1 \end{bmatrix} \text{ perpendicular.}$
9	Find the value of the dot product $\begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -17 \\ 1.5 \\ 6 \end{bmatrix}$.
10	Find the absolute value of the sine of the angle between the vectors $\begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

	6 points each	
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$.	
12	Find the inverse of the matrix $ \begin{bmatrix} 1 & 5 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} $	
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of A_2 , A_3 , A_4 ,, A_n ,, where $n \ge 2$. Find the minimum value of all such determinants.	
14	Find the cross product, written as a column vector: $ \begin{bmatrix} 2 \\ $	
15	The equation of the plane containing the points $(2,-1,-1)$, $(3,4,-2)$, and $(0,1,-3)$ can be written as $Ax + By + Cz = D$, where A, B, C , and D are relatively prime integers with $A > 0$. Find the value of $(A+D)^{B-C}$.	

2012 – 2013 Log1 Contest Round 1 Theta Matrices

	4 points each	
1	Evaluate: $2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix}$	$\begin{bmatrix} -4 & -3 \\ 7 & 20 \end{bmatrix}$
2	Evaluate: $\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix}$	1
3	Solve for $x : \begin{bmatrix} x & 2 & 3 \\ 7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 61 \end{bmatrix}$	2
4	Solve for $x: \begin{vmatrix} x & -6 & 2 \\ 7 & 1 & 0 \\ 1 & 3 & 5 \end{vmatrix} = 250$	0
5	If A is a 2×2 matrix whose inverse is equal to A, find A^{2012} .	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

	5 points each		
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,	8	
	(-1,-5), and $(3,-3)$?		
7	Find the trace of the matrix $ \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} $	34	
8	Find the inverse of $\begin{bmatrix} -2 & 12 \\ 0 & 4 \end{bmatrix}$, with entries written as decimals.	$\begin{bmatrix} -0.5 & 1.5 \\ 0 & 0.25 \end{bmatrix}$	
9	How many entries in the product $\begin{bmatrix} -3 & 7 \\ -2 & 0 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} 0 & 4 & 4 & -3 & 1 \\ 1 & -2 & 0 & 2 & 1 \end{bmatrix}$ are not equal to 0?	14	
10	When using Cramer's Rule on the system $\begin{cases} 2x+3y=117\\ -2x+5y=40 \end{cases}$, the solution for x can be	7440	
	written as $\frac{a}{b}$, where <i>a</i> and <i>b</i> are relatively prime positive integers. Find the product <i>ab</i> .		

	6 points each	
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$	(5,4)
12	Find the element in the third row and second column for the inverse of the matrix $\begin{bmatrix} 2 & 3 & 5 \\ 4 & -6 & 1 \\ -1 & 4 & 1 \end{bmatrix}$.	$-\frac{11}{15}$
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of A_2 , A_3 , A_4 ,, A_n ,, where $n \ge 2$. Find the minimum value of all such determinants.	-1
14	If <i>A</i> , <i>B</i> , <i>C</i> , and <i>D</i> have dimensions of 2×6, 3×4, 2×3, and 6×4, respectively, which of the following is not a square matrix: $AD(CB)^{T}$, $(CB)^{T}AD$, $B^{T}B(AD)^{T}$, or $(A^{T}ADD^{T})^{T}$?	$B^{T}B(AD)^{T}$
15	What value of x makes the matrix $\begin{bmatrix} 4 & -2 & 1 \\ 3 & x & -6 \\ 2 & 5 & -3 \end{bmatrix}$ singular?	$\frac{141}{14}$

2012 – 2013 Log1 Contest Round 1 Alpha Matrices

4 points each		
1	Evaluate: $2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix}$	$\begin{bmatrix} -4 & -3 \\ 7 & 20 \end{bmatrix}$
2	Evaluate: $\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix}$	1
3	Solve for $x: \begin{bmatrix} x & 2 & 3 \\ 7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 61 \end{bmatrix}$	2
4	Solve for $x: \begin{vmatrix} x & -6 & 2 \\ 7 & 1 & 0 \\ 1 & 3 & 5 \end{vmatrix} = 250$	0
5	A matrix <i>A</i> is called idempotent if $A^2 = A$. If <i>A</i> is a 3×3 idempotent invertible matrix, find <i>A</i> .	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

	5 points each					
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,	8				
	(-1,-5), and $(3,-3)$?					
7	Find the trace of the matrix $ \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} $	34				
8	Find the projection of the vector $\begin{bmatrix} 2\\ -1\\ 5 \end{bmatrix}$ onto the vector $\begin{bmatrix} -4\\ -5\\ 3 \end{bmatrix}$, with the vector written	$\begin{bmatrix} -0.96 \\ -1.2 \\ 0.72 \end{bmatrix}$				
	as a column vector and with entries written in decimal form.					
9	Find the value of the dot product $\begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -17 \\ 1.5 \\ 6 \end{bmatrix}$.	2				
10	When using Cramer's Rule on the system $\begin{cases} 2x+3y=117\\ -2x+5y=40 \end{cases}$, the solution for x can be	7440				
	written as $\frac{1}{b}$, where <i>a</i> and <i>b</i> are relatively prime positive integers. Find the product <i>ab</i> .					

	6 points each			
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$	(5,4)		
12	Find the element in the third row and second column for the inverse of the matrix $\begin{bmatrix} 2 & 3 & 5 \\ 4 & -6 & 1 \\ -1 & 4 & 1 \end{bmatrix}$.	$-\frac{11}{15}$		
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of A_2 , A_3 , A_4 ,, A_n ,, where $n \ge 2$. Find the minimum value of all such determinants.	-1		
14	Find the cross product, written as a column vector: $\begin{bmatrix} 2 \\ 5 \\ 11 \end{bmatrix} \times \begin{bmatrix} 7 \\ 3 \\ 13 \end{bmatrix}$	32 51 -29		
15	What value of x makes the matrix $\begin{bmatrix} 4 & -2 & 1 \\ 3 & x & -6 \\ 2 & 5 & -3 \end{bmatrix}$ singular?	$\frac{141}{14}$		

2012 – 2013 Log1 Contest Round 1 Mu Matrices

	4 points each		
1	Evaluate: $2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix}$	$\begin{bmatrix} -4 & -3 \\ 7 & 20 \end{bmatrix}$	
2	Evaluate: $\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix}$	1	
3	Solve for $x : \begin{bmatrix} x & 2 & 3 \\ 7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 61 \end{bmatrix}$	2	
4	Consider matrix $A = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$. <i>A</i> rotates point (x, y) counterclockwise about	210°	
	the origin by some angle $ heta$ (in degrees) to point (a,b) by considering the equation		
	$A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} a\\ b\end{bmatrix}$. If θ is the least such positive such angle, find θ .		
5	A matrix <i>A</i> is called idempotent if $A^2 = A$. If <i>A</i> is a 3×3 idempotent invertible matrix, find <i>A</i> .	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	

	5 points each				
6	How much area is enclosed by a triangle whose vertices are at the points $(7,3)$,	8			
	(-1,-5), and $(3,-3)$?				
7	Find the trace of the matrix $ \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix} $	34			
8	Find the positive value of <i>a</i> that makes the vectors $\begin{bmatrix} 2\\5\\-1\\-5 \end{bmatrix}$ and $\begin{bmatrix} a^2\\-a\\2\\1 \end{bmatrix}$ perpendicular.				
9	Find the value of the dot product $ \begin{bmatrix} 2 \\ $				
10	Find the absolute value of the sine of the angle between the vectors $ \begin{bmatrix} 4 \\ $				

	6 points each				
11	Find the ordered pair solution to the system $\begin{cases} 14x - 15y = 10\\ -15x + 16y = -11 \end{cases}$	(5,4)			
12	Find the inverse of the matrix $ \begin{bmatrix} 1 & 5 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} $	$\begin{bmatrix} 0 & \frac{1}{6} & 0 & 0 \\ \frac{1}{5} & -\frac{1}{30} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$			
13	A square matrix A_n whose dimensions are $n \times n$ is defined by having each entry equal to the sum of its row and column numbers. For example, the element in the third row and second column of A_6 is $3+2=5$. Consider the determinants of $A_{01}A_{02}A_{03}$, A_{12} , m_1A_{12} , m_2A_{13} , m_3A_{13} , m_4A_{13} , m_5A_{13} , m_5				
14	Find the cross product, written as a column vector: $ \begin{bmatrix} 2 \\ $				
15	The equation of the plane containing the points $(2,-1,-1)$, $(3,4,-2)$, and $(0,1,-3)$ 100 can be written as $Ax + By + Cz = D$, where A, B, C , and D are relatively prime				
	integers with $A > 0$. Find the value of $(A+D)$.				

2012 – 2013 Log1 Contest Round 1 Matrices Solutions

Mu	Al	Th	Solution
1	1	1	$2\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix} - 3\begin{bmatrix} 2 & -1\\ -1 & -4 \end{bmatrix} = \begin{bmatrix} 2 & -6\\ 4 & 8 \end{bmatrix} - \begin{bmatrix} 6 & -3\\ -3 & -12 \end{bmatrix} = \begin{bmatrix} -4 & -3\\ 7 & 20 \end{bmatrix}$
2	2	2	$\begin{vmatrix} -4 & 5 \\ -5 & 6 \end{vmatrix} = (-4)(6) - (-5)(5) = -24 + 25 = 1$
3	3	3	$\begin{bmatrix} 19\\61 \end{bmatrix} = \begin{bmatrix} x & 2 & 3\\7 & 6 & 8 \end{bmatrix} \begin{bmatrix} 5\\3\\1 \end{bmatrix} = \begin{bmatrix} 5x+6+3\\35+18+8 \end{bmatrix} = \begin{bmatrix} 5x+9\\61 \end{bmatrix} \Rightarrow 19 = 5x+9 \Rightarrow x = 2$
	4	4	$250 = \begin{vmatrix} x & -6 & 2 \\ 7 & 1 & 0 \\ 1 & 3 & 5 \end{vmatrix} = 5x + 0 + 42 - 2 - 0 - (-210) = 5x + 250 \Longrightarrow x = 0$
4			The counterclockwise rotation matrix is $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$, so $\cos\theta = -\frac{\sqrt{3}}{2}$ and
			$\sin\theta = -\frac{1}{2}$, and the smallest positive degree-measure angle satisfying these two equations is $\theta = 210^{\circ}$.
		5	If $A = A^{-1}$, then $A^2 = I \Longrightarrow A^{2012} = (A^2)^{1006} = I^{1006} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
5	5		If <i>A</i> is idempotent and invertible, then $A = IA = (A^{-1}A)A = (A^{-1})(A^2) = A^{-1}A = I$, so $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
6	6	6	The area is $\begin{vmatrix} 1 \\ -1 \\ 3 \\ -3 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ $
7	7	7	The trace is just the sum of the entries on the main diagonal: $1+6+11+16=34$.
		8	$\begin{bmatrix} -2 & 12 \\ 0 & 4 \end{bmatrix}^{-1} = \frac{1}{(-2)(4) - 0(12)} \begin{bmatrix} 4 & -12 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} -0.5 & 1.5 \\ 0 & 0.25 \end{bmatrix}$
	8		$\begin{bmatrix} 2\\-1\\-5\\5\end{bmatrix} \cdot \begin{bmatrix} -4\\-5\\3\end{bmatrix} \begin{bmatrix} -4\\-5\\3\end{bmatrix} = \frac{-8+5+15}{16+25+9} \begin{bmatrix} -4\\-5\\3\end{bmatrix} = \frac{12}{50} \begin{bmatrix} -4\\-5\\3\end{bmatrix} = \begin{bmatrix} -0.96\\-1.2\\0.72\end{bmatrix}$

8			$0 = \begin{bmatrix} 2\\5\\-a\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} a^2\\-a\\2\\1 \end{bmatrix} = 2a^2 - 5a - 7 = (2a - 7)(a + 1) \Rightarrow a = \frac{7}{2} \text{ since } a > 0$
		9	The only entry that is 0 is the second row times the first column (it is easy to check that the other entries are not zeros). Since the dimensions of the result are 3×5 , there are 14 nonzero entries.
9	9		$\begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -17 \\ 1.5 \\ 6 \end{bmatrix} = (2)(-17) + (-4)(1.5) + (7)(6) = -34 - 6 + 42 = 2$
	10	10	$x = \frac{\begin{vmatrix} 117 & 3 \\ 40 & 5 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ -2 & 5 \end{vmatrix}} = \frac{585 - 120}{10 - (-6)} = \frac{465}{16}$, which is in lowest terms, so $(465)(16) = 7440$
10			$\sin\theta = \frac{\begin{bmatrix} 4\\-2\\3\end{bmatrix} \times \begin{bmatrix} -2\\1\\1\\\end{bmatrix}}{\begin{bmatrix} 4\\-2\\3\end{bmatrix} \cdot \begin{bmatrix} -2\\1\\1\\\end{bmatrix}} = \frac{\begin{bmatrix} -5\\-10\\0\\\end{bmatrix}}{\sqrt{16+4+9} \cdot \sqrt{4+1+1}} = \frac{\sqrt{25+100+0}}{\sqrt{29} \cdot \sqrt{6}} = \frac{5\sqrt{5}}{\sqrt{174}} = \frac{5\sqrt{870}}{174}$
11	11	11	$x = \frac{\begin{vmatrix} 10 & -15 \\ -11 & 16 \\ \hline 14 & -15 \\ -15 & 16 \end{vmatrix}}{\begin{vmatrix} 160 - 165 \\ 224 - 225 \end{vmatrix}} = 5 \text{ and } y = \frac{\begin{vmatrix} 14 & 10 \\ -15 & -11 \\ \hline 14 & -15 \\ -15 & 16 \end{vmatrix}}{\begin{vmatrix} -154 + 150 \\ 224 - 225 \end{vmatrix}} = 4, \text{ so the ordered pair}$ is (5,4).
	12	12	$\frac{1}{\begin{vmatrix} 2 & 3 & 5 \\ 4 & -6 & 1 \\ -1 & 4 & 1 \end{vmatrix}} \left(-\begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \right) = \frac{1}{-12 - 3 + 80 - 30 - 8 - 12} (-8 - 3) = -\frac{11}{15}$
12			$\begin{bmatrix} 1 & 5 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}^{-1} = \frac{1}{-240} \begin{bmatrix} 0 & -40 & 0 & 0 \\ -48 & 8 & 0 & 0 \\ 0 & 0 & -120 & 0 \\ 0 & 0 & 0 & -60 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{6} & 0 & 0 \\ \frac{1}{5} & -\frac{1}{30} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$
13	13	13	For A_3 and above, two different choices of two consecutive rows can be subtracted to yield two rows that are identical, so all of those determinants are 0. $ A_2 = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = 8 - 9 = -1$, so the minimum value of all determinants is -1 .

		14	$AD(CB)^{T}$ has dimensions $(2 \times 6)(6 \times 4)((2 \times 3)(3 \times 4))^{T} = (2 \times 4)(2 \times 4)^{T} = (2 \times 4)(4 \times 2)$
			=2×2, so this is square; likewise, $(CB)^T AD$ would have dimensions 4×4 and is thus
			square. $(A^T A D D^T)^T$ has dimensions $((6 \times 2)(2 \times 6)(6 \times 4)(4 \times 6))^T = (6 \times 6)^T = 6 \times 6$,
			which is also square. $B^{T}B(AD)^{T}$ has dimensions $(4\times3)(3\times4)((2\times6)(6\times4))^{T}$
			$=(4\times4)(2\times4)^{T}=(4\times4)(4\times2)=4\times2$, so this is not square.
14	14		$\begin{bmatrix} 2\\5\\11 \end{bmatrix} \times \begin{bmatrix} 7\\3\\13 \end{bmatrix} = \begin{vmatrix} i & j & k\\2 & 5 & 11\\7 & 3 & 13 \end{vmatrix} = 65i + 77j + 6k - 35k - 33i - 26j = 32i + 51j - 29k = \begin{bmatrix} 32\\51\\-29 \end{bmatrix}$
	15	15	Singular is equivalent to meaning the determinant is 0, so $0 = \begin{vmatrix} 4 & -2 & 1 \\ 3 & x & -6 \\ 2 & 5 & -3 \end{vmatrix} = -12x + 24$
			$+15-2x+120-18=-14x+141 \Longrightarrow x=\frac{141}{14}.$
15			Create two vectors in the plane by subtracting the points: $\langle 3-2,4-(-1),-2-(-1) angle$
			$=\langle 1,5,-1 \rangle$ and $\langle 0-2,1-(-1),-3-(-1) \rangle = \langle -2,2,-2 \rangle$. The cross product of these
			vectors will be the normal vector to the plane and will thus give the coefficients of the
			variables. $\begin{vmatrix} i & j & k \\ 1 & 5 & -1 \\ -2 & 2 & -2 \end{vmatrix} = -10i + 2j + 2k + 10k + 2i + 2j = -8i + 4j + 12k$, so the equation of
			the plane is $-8x+4y+12z=D$. To find the value of <i>D</i> , plug in any point:
			-8(0)+4(1)+12(-3)=0+4-36=-32. Thus, the equation of the plane is
			-8x+4y+12z=-32, and dividing both sides by -4 yields $2x-y-3z=8$, and these
			coefficients are relatively prime integers with $A > 0$. Therefore, $(A+D)^{B-C}$
			$=(2+8)^{-1-(-3)}=10^2=100.$