- 1. В
- 2. C C C A
- 3.
- 4. 5.
- 6.
- D C E B C D D 7. 8.
- 9.
- 10. 11.
- 12.
- 13.
- D 14.
- D 15. B C B 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- E A C C C C E B 25.
- 26.
- 27. A В 28.
- 29.
- A C 30.

- 1. B $\frac{1}{2}$ mv²=mgh, h= $\frac{1}{2}$ gt², solve for t.
- 2. C C = kappa*epsilon_o*A/d. 2A/2d = 1.
- 3. C The greatest product of x^*y will be its final position. It will still be rolling when it reaches that position because there is no friction on the last segment. The rotational kinetic energy will be 1/3 of its total energy since the rotational inertia of a uniform disk is $(1/2)mR^2$ so it will only reach a final height of 2/3. At this height x is 11/3 and x*y is 22/9.
- 4. C Q/V is capacitance which is farads.
- 5. A $r = 1.5R_e$ so $a_g = 10/1.5^2$
- 6. D 40/9*4 = 160/9, then the mass inside is only $(.75)^3$ as much so 160/9*27/64 = 7.5
- 7. D $4/3*pi*r^3*rho*k/r^2 \propto r$
- 8. C inner + inner of outer =0 and inner of outer plus outer of outer = outer
- 9. E work = q^{*} the integral of E(x)dx from 0 to 2.
- 10. B $\frac{1}{2}$ r means $\frac{1}{4}$ Inertia and 4x omega. 4x omega means $\frac{1}{4}$ time.
- 11. C each V=kq/r, and each vertex is s/(sqrt3) from the centroid, 6x*k*sqrt3/s
- 12. D the sphere would contain all the charges so by gauss' law flux=Qin/ ε_0
- 13. D it would be the difference of the potential on the two sphere's which would be Q_1/r_1 - Q_2/r_2 where Q is σ^* surface area
- 14. D C=Q/V so Q=CV
- 15. D 150/(100+50)=1, $1*100-5(1)^2=95$
- 16. B integral simplifies to kQ/r where r is the distance from a point on the ring to (x,0)
- 17. C $V_c(t)=EMF(1-e^{-(-t/RC)})$. EMF is 9, R is 1, C is 1. Take the derivative at 2.
- 18. B max force on top is 40 so net max is 80 but friction on bottom is 80,
- 19. E $(m/2)v^2$ =mgLsin45+1*mgLcos45 L=45/(sqrt2)
- 20. A Tau = RC, $C = (1/1+\frac{1}{2}+\frac{1}{3})^{-1}=6/11$, R = 2+3=5, RC=30/11
- 21. C 9V=ir+iR, iR=6, so ir=3, 3V=1Ar, r=3ohms
- 22. C $F=qvB, B=Mu_0*I/(2*pi*r)$
- 23. C $g=10=GM_e/r_e^2$, $\frac{2}{5}$ r --> 8/125 the volume and 16/125 the mass. 10*(16/125)/(4/25)=8.
- 24. C $v_a r_a = v_p r_p$ so 29.25x = 13(2a-x) & a=42.25 now use vis viva v=sqrt(GM(2/r-1/a))
- 25. E A&B add to 3C_A, to add that in series with C_C get C_{eq}= $(1/(3C_A)+1/(3C_A))^{-1}=3C_A/2$.
- 26. B $B=\mu_0 I/2\pi r$ and I is I_{tot} *the portion of the area inside the loop= r^2/R^2
- 27. A mag of emf = $d\Phi/dt = d(A^*B\cos\theta)/dt$, θ is the angle with the moment of the plane so it will be 0 and we have $d\Phi/dt=B^*1^*d(\pi R^2)/dt$
- 28. B torque=B(t)*I(t)*A(t)*sin θ . Take the derivative at 2. sin θ is always 1.
- 29. A rate of work is P=F*V. F = GmM/(5r)² & .5mV²=GMm/(5r) so $P=(2GM/(5r))^{\frac{1}{2}*}GmM/(25r^2)=(2G^3M^3m^2/3125r^5)^{\frac{1}{2}}$
- 30. C Fnet/M=a=dv/dt=Mg-bV/M then solve the separable differential equation.