- $1.$ $\, {\bf B}$
- 2. C
- \overline{C} C 3.
- 4. 5. $\mathbf A$
- $\bar{\rm D}$ 6.
- 7.
- \overline{D}
 C
 E 8.
- 9.
- $\, {\bf B}$ $10.$ $11.$ $\mathbf C$
- \overline{D} $12.$
- $\begin{array}{c} \n\end{array}$ 13.
- 14. ${\bf D}$
- ${\bf D}$ 15. \overline{B} \overline{C} \overline{B} 16.
- 17.
- 18.
- 19. ${\bf E}$
- 20.
- 21.
- $\begin{array}{c} \mathbf{A} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \end{array}$ 22.
- 23.
- 24.
- 25.
- E
B 26.
- 27. $\mathbf A$
- $\, {\bf B}$ 28. 29. $\mathbf A$
- 30. ${\bf C}$
- 1. B $\frac{1}{2}mv^2 = mgh$, h= $\frac{1}{2}gt^2$, solve for t.
- 2. C $C = \text{kappa}^*$ epsilon_o*A/d. 2A/2d = 1.
- 3. C The greatest product of x^*y will be its final position. It will still be rolling when it reaches that position because there is no friction on the last segment. The rotational kinetic energy will be 1/3 of its total energy since the rotational inertia of a uniform disk is $(1/2)$ m R^2 so it will only reach a final height of 2/3. At this height x is 11/3 and x^*y is 22/9.
- 4. C Q/V is capacitance which is farads.
- 5. A $r = 1.5R_e$ so $a_g = 10/1.5^2$
- 6. D 40/9*4 = 160/9, then the mass inside is only $(.75)^3$ as much so 160/9 * 27/64 = 7.5
- 7. D $4/3$ *pi*r³ *rho*k/r² \propto r
- 8. C inner + inner of outer =0 and inner of outer plus outer of outer = outer
- 9. E work = q^* the integral of E(x)dx from 0 to 2.
- 10. B $\frac{1}{2}$ r means $\frac{1}{4}$ Inertia and $4x$ omega. $4x$ omega means $\frac{1}{4}$ time.
- 11. C each V=kq/r, and each vertex is $s/(sqrt3)$ from the centroid, $6x*k*sqrt3/s$
- 12. D the sphere would contain all the charges so by gauss' law flux= Qin/ε_0
- 13. D it would be the difference of the potential on the two sphere's which would be Q_1/r_1 - Q_2/r_2 where Q is σ^* surface area
- 14. D $C=Q/V$ so $Q=CV$
- 15. D $150/(100+50)=1$, $1*100-5(1)^2=95$
- 16. B integral simplifies to kQ/r where r is the distance from a point on the ring to $(x,0)$
- 17. C $V_c(t)=EMF(1-e^{-t/RC})$. EMF is 9, R is 1, C is 1. Take the derivative at 2.
- 18. B max force on top is 40 so net max is 80 but friction on bottom is 80,
- 19. E $(m/2)v^2 = mgL\sin 45 + 1*mgL\cos 45 L = 45/(sqrt2)$
- 20. A Tau = RC, $C = (1/1 + \frac{1}{2} + \frac{1}{3})^{-1} = 6/11$, $R = 2 + 3 = 5$, RC=30/11
- 21. C $9V=ir+iR$, $iR=6$, so $ir=3$, $3V=1Ar$, $r=3ohms$
- 22. C F=qvB, $B=Mu_0*I/(2*pi*r)$
- 23. C $g=10=GM_e/r_e^2$, $\frac{2}{5}$ r --> 8/125 the volume and 16/125 the mass. $10*(16/125)/(4/25)=8.$
- 24. C $v_a r_a = v_p r_p$ so $29.25x = 13(2a-x)$ & a=42.25 now use vis viva v=sqrt(GM(2/r-1/a))
- 25. E A&B add to $3C_A$, to add that in series with C_C get $C_{eq} = (1/(3C_A)+1/(3C_A))^{-1} = 3C_A/2$.
- 26. B B= $\mu_0 I/2\pi r$ and I is I_{tot}* the portion of the area inside the loop= r^2/R^2
- 27. A mag of emf = $d\Phi/dt = d(A^*Bcos\theta)/dt$, θ is the angle with the moment of the plane so it will be 0 and we have $d\Phi/dt = B^*1^*d(\pi R^2)/dt$
- 28. B torque=B(t)*I(t)*A(t)*sin θ . Take the derivative at 2. sin θ is always 1.
- 29. A rate of work is P=F*V. $F = GmM/(5r)^2 \& .5mV^2 = GMm/(5r)$ so $P=(2GM/(5r))^{1/2}*GmM/(25r^2)=(2G^3M^3m^2/3125r^5)^{1/2}$
- 30. C Fnet/M=a=dv/dt=Mg-bV/M then solve the separable differential equation.