## Mu Alpha Theta National Convention 2007 Sequences and Series Alpha - SOLUTIONS

- 1. Common difference =  $36 10 = 26 \mathbf{B}$
- 2. Common ratio  $= \frac{\pi}{2} \div \frac{1}{2} = \pi \mathbf{A}$ 3.  $a_4 = \frac{2(4)}{4+2} = \frac{4}{3} \mathbf{B}$ 4.  $b_3 = \sin\left(\frac{3 \cdot \pi}{2}\right) = -1 \mathbf{A}$
- 5. We can see that this sequence is increasing exponentially, and the ratio of sequential terms is getting closer to 3.  $c_n = 3^n 2$  fits this model **C**

6. Let 
$$x = \sqrt{30 + \sqrt{30 + \sqrt{30 + ...}}}$$
, it follows that  $x = \sqrt{30 + x} \Rightarrow (x - 6)(x + 5) = 0 \Rightarrow$   
 $x = 6$  since it must be a positive number **C**  

$$\sum_{k=4}^{9} (5k^2 - 2k + 1) = \sum_{k=1}^{9} (5k^2 - 2k + 1) - \sum_{k=1}^{3} (5k^2 - 2k + 1)$$
7.  
 $= \frac{5(9)(9 + 1)(2(9) + 1)}{6} - \frac{2(9)(9 + 1)}{2} + 9 - (\frac{5(3)(3 + 1)(2(3) + 1)}{6} - \frac{2(3)(3 + 1)}{2} + 3) = 1283$ 
8. Order of differences  $\begin{cases} 1 \\ 3 \\ -3 \\ -3 \\ -3 \\ -1 \\ 15 \end{cases} + 9 - (\frac{5(3)(3 + 1)(2(3) + 1)}{6} - \frac{2(3)(3 + 1)}{2} + 3) = 1283$ 
8. Order of differences  $\begin{cases} 1 \\ 3 \\ -3 \\ -3 \\ -3 \\ -1 \\ 15 \end{cases} + 1$  shows that T(n) is a 2<sup>nd</sup> degree polynomial  $10 \\ -3 \\ -1 \\ -5 \end{bmatrix}$ 

 $T(n) = an^2 + bn + c$ , solving simultaneously for a, b, c: 1 = a + b + c $3 = 4a + 2b + c \Rightarrow a = \frac{1}{2}, b = \frac{1}{2}, c = 0 \Rightarrow T(n) = \frac{1}{2}n^2 + \frac{1}{2}n \Rightarrow \sum_{n=1}^{7} T(n) = 84$  **D** 6 = 9n + 3b + c9. 34 - 6 = 28 En a<sub>n</sub> 3 1 2 4 3 6 4 10 5 18 6 34

10. Rewrite the equation as  $a_{k+1} - 3a_k = -2$ , giving the characteristic equation r - 3 = 0 $\Rightarrow$  r = 3  $\Rightarrow$   $a_k = p \cdot 3^k + q$ 

$$3 = 3p + q \rightarrow p = \frac{2}{3}, q = 1 \rightarrow a_{k} = \frac{2}{3}(3^{k}) + 1 = 2(3^{k-1}) + 1.2 + 3 - 1 = 4 \mathbf{B}$$
  
11. Total distance =  $15 + 10 + \frac{10}{3} + \frac{10}{9} \dots = 15 + \frac{10}{1 - \frac{1}{3}} = 30 \mathbf{B}$   
12.  $2 \cdot \sum_{k=1}^{15} \sin\left(\frac{\pi \cdot k}{4}\right) \cos\left(\frac{\pi \cdot k}{4}\right) = \sum_{k=1}^{15} \sin\left(\frac{\pi \cdot k}{2}\right) = 0 \mathbf{B}$   
13. Let  $x = 1 + \frac{1}{3 + \frac{1}{1 + \frac{1}{3 + \frac{1}{1 + \dots}}}}, \text{ then } x = 1 + \frac{1}{3 + \frac{1}{x}} = 1 + \frac{x}{3x + 1} \rightarrow$   
 $3x^{2} + x = 4x + 1 \rightarrow 3x^{2} - 3x - 1 = 0 \rightarrow x = \frac{3 \pm \sqrt{21}}{6}.$   
*x* must be positive so  $x = \frac{3 + \sqrt{21}}{6} \mathbf{C}$   
14. Solving the equation for K:  $50 = K\left(\frac{1}{2}\right)^{\frac{1}{8}}$  when  $t = 12$  gives  $K = \frac{50}{\left(\frac{1}{2}\right)^{\frac{3}{2}}} = 100\sqrt{2} \mathbf{E}$ 

15. The last two digits follow a pattern:

| Number | Last two digits | The last digit is always 1, and the second to last goes |
|--------|-----------------|---------------------------------------------------------|
| 21     | 21              | through the sequence 2, 4, 6, 8, 0, 2, 4, 6, 8, 0,      |
| 21^2   | 41              |                                                         |
| 21^3   | 61              | So every 5th power gives the same final two digits.     |
| 21^4   | 81              | Powers of 5, 10, 15, 90, 95, 100 will all have 01 as    |
| 21^5   | 01              | the final two digits.                                   |
| 21^6   | 21              |                                                         |
| 21^7   | 41              | The last two digits of $21^{100}$ are 01 C              |

16. This is the Fibonacci sequence. The next term is the sum of the previous two. 21 + 34 = 55 C

17. 499,000 = 49,900
$$(1-0.55)^{t/30} \rightarrow t = 30 \frac{\log(0.1)}{\log(0.45)}$$
 **B**



18.

Using the Pythagorean theorem,  $1 + r^2 = r^4 \rightarrow$ 

$$r^{4} - r^{2} - 1 = 0 \rightarrow (r^{2})^{2} - r^{2} - 1 = 0 \rightarrow r^{2} = \frac{1 + \sqrt{5}}{2}$$
  

$$\sin(\theta) = \frac{1}{r^{2}} = \frac{2}{1 + \sqrt{5}} = \frac{\sqrt{5} - 1}{2} \mathbf{B}$$
  
19. We can see that for  $n > 3$ ,  $\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}^{n} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ . So  $|X_{3}| = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 \mathbf{B}$   
20. The coefficient of  $x^{a}y^{b}$  is  $\frac{(a+b)!}{a!b!}$ , so for  $x^{12}y^{13}$  the answer is  $\frac{25!}{13!12!} \mathbf{D}$   
21.  $\sum_{n=0}^{k} (n \cdot n!) = (k+1)! \rightarrow \sum_{n=1}^{k} (n \cdot n!) = (k+1)! - 1 \rightarrow \mathbf{A}$   
 $\sum_{n=2}^{500} (n \cdot n!) = (500+1)! - 1 - 1 = 501! - 2$ 

- 22. Rationalizing the denominators, we have  $(\sqrt{2} \sqrt{1}) + (\sqrt{3} \sqrt{2}) + (\sqrt{4} \sqrt{3}) + \dots + (\sqrt{25} \sqrt{24}) = 4$  **D**
- 23. Only II and III are correct. E

24. Observe the sum for small values of *n*, you will see that  $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ 16

$$\sum_{k=1}^{16} \frac{1}{k(k+1)} = \frac{16}{17} \quad \mathbf{B}$$
  
25.  $\frac{10^9}{9!} = \frac{10^{10}}{10!} \rightarrow a_9 = a_{10}$ . Only II and III are true. **B**

26. Using partial fraction decomposition,  $\frac{2}{k^2 + 2k} = \frac{1}{k} - \frac{1}{k+2}$ . For the series, all terms except for  $1 + \frac{1}{2}$  are subtracted out.  $\sum_{i=1}^{\infty} \frac{2}{k^2 + 2k} = \frac{3}{2}$  C 27. Order of differences shows that S(n) is a 3<sup>rd</sup> degree polynomial.

1

28. Let  $d_A, d_B$  be the common differences of the two sequences. Then  $a_{11} = a_1 + 10d_A$  and

$$b_{11} = b_1 + 10d_B \rightarrow \frac{a_{11}}{b_{11}} = \frac{a_1 + 10d_A}{b_1 + 10d_B}$$

Using the formula for the sum of an arithmetic series:

$$(4n+27)\left(\frac{n}{2}(2a_{1}+(n-1)d_{A})\right) = (7n+1)\left(\frac{n}{2}(2b_{1}+(n-1)d_{B})\right) \Rightarrow$$

$$\frac{\left(\left(2a_{1}+(n-1)d_{A}\right)\right)}{\left(\left(2b_{1}+(n-1)d_{B}\right)\right)} = \frac{(7n+1)}{(4n+27)} \Rightarrow \text{Using } n = 21 \text{ gives the ratio we are looking for:}$$

$$\frac{a_{1}+10d_{A}}{b_{1}+10d_{B}} = \frac{(7(21)+1)}{(4(21)+27)} = \frac{4}{3} \mathbf{B}$$

29. Let *a* be the first number and *b* be the last number. *a* is 4005. We can see that b + 9 = 5004, so it follows that  $n = \frac{5004 - 4005}{9} = 111$  B

30. 
$$2 = x^{x^{x^{x^{*}}}} \to 2 = x^2 \to x = \sqrt{2}$$
 A