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1. Common difference = 36 – 10 = 26 B 
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5. We can see that this sequence is increasing exponentially, and the ratio of sequential     
terms is getting closer to 3. 23 −= n

nc  fits this model C 

6. Let ...303030 +++=x , it follows that xx += 30  � ( )( ) 056 =+− xx  �  

  x = 6 since it must be a positive number C 
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8. Order of differences 
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 shows that T(n) is a 2nd degree polynomial 

  cbnannT ++= 2)( , solving simultaneously for a, b, c: 
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9.  34 – 6 = 28 E 
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2 4 
3 6 
4 10 
5 18 
6 34 

 
10. Rewrite the equation as 231 −=−+ kk aa , giving the characteristic equation 03 =−r    
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11. Total distance = 15 + 30
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14. Solving the equation for K: 
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15.   The last two digits follow a pattern: 
       
     Number        Last two digits  
       21                 21 
       21^2             41 
       21^3             61 
       21^4             81 
       21^5             01 
       21^6             21 
       21^7             41 

The last digit is always 1, and the second to last goes 
through the sequence 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, …   
 
So every 5th power gives the same final two digits. 
Powers of 5, 10, 15, ... 90, 95, 100 will all have 01 as 
the final two digits. 
 
The last two digits of 10021  are 01 C 

 
16. This is the Fibonacci sequence. The next term is the sum of the previous two.  

21 + 34 = 55 C 
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18. Using the Pythagorean theorem, 421 rr =+  � 
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19. We can see that for n > 3, 
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20. The coefficient of ba yx  is 
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22. Rationalizing the denominators, we have   
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23. Only II and III are correct. E 

24. Observe the sum for small values of n, you will see that ( ) 11
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26.  Using partial fraction decomposition, 
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27. Order of differences shows that S(n) is a 3rd degree polynomial.  
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28. Let BA dd ,  be the common differences of the two sequences. Then Adaa 10111 +=  and   
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   Using the formula for the sum of an arithmetic series: 
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� Using n = 21 gives the ratio we are looking for: 
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29. Let a be the first number and b be the last number. a is 4005. We can see that b + 9 = 

5004, so it follows that n = 111
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