- 1. (B) All choices but (B) are based on elementary or sine or tangent sum identities. Choice (B) should have a minus instead of a plus, based on the identity $\cos(\alpha + \beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$.
- 2. (A) Any polar graph with an equation of the form $r = a \pm b \cos \theta$ with |a| < |b| is a limacon with an inner loop. This can easily be confirmed graphically.
- 3. (C) The graph of $r = a\cos(n\theta)$ has n petals when n is odd and 2n petals when n is even.
- 4. (C) Only (C) is true: the range of Arccot x is $[0, \pi)$.
- 5. **(A)** $\sin \theta = \sqrt{1 \cos^2 \theta} = \sqrt{1 \frac{20^2}{29^2}} = \sqrt{1 \frac{400}{841}} = \sqrt{\frac{441}{841}} = \frac{21}{29}$ $\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{\frac{21}{29} + 1}{-\frac{20}{29}} = \frac{-21 29}{20} = -\frac{5}{2}$ a b = -5 2 = -7
- 6. **(B)** Using the half-angle identity $\cos \theta = \pm \sqrt{\frac{1}{2}(1 + \cos 2\theta)}$, $\cos 15^{\circ} = \sqrt{\frac{1}{2}(1 + \cos 30^{\circ})} = \sqrt{\frac{1}{2}(1 + \frac{\sqrt{3}}{2})} = \frac{1}{2}\sqrt{2 + \sqrt{3}} \Rightarrow (\frac{c}{a})^{\frac{b}{a}} = (3 \cdot 2)^{2 \cdot 2} = 1296$ Sum of digits = 1 + 2 + 9 + 6 = 18
- 7. **(B)** Area $= \frac{1}{2}ab\sin C = \frac{1}{2}(14)(26)\sin 30^\circ = \frac{1}{2}(14)(26)(\frac{1}{2}) = 91 = 91\sqrt{1} \Rightarrow ab = (91)(1) = 91 \Rightarrow$ Sum of digits = 9 + 1 = 10
- 8. **(B)** The period of f(x) is the smallest λ such that $f(x) = f(x + \lambda)$. Since it is known that the smallest such λ for $g(x) = \cos x$ is 2π and $f(x) = g(2007\pi x)$, we need $2007\pi\lambda = 2\pi \Rightarrow \lambda = \frac{2}{2007}$.
- 9. (A) Since we have the lengths of two adjacent sides, x and y, we need only the measure of the included angle $\angle ABQ$ to compute the area of the parallelogram as $xy\sin(\angle ABQ)$. Using the law of sines within triangle ABQ,

$$\begin{split} &\frac{\sin(\angle BAQ)}{y} = \frac{\sin(\angle AQB)}{x} \Rightarrow \frac{z}{y} = \frac{\sin(\angle AQB)}{x} \Rightarrow \angle AQB = \operatorname{Arcsin}(\frac{xz}{y}) \\ &\angle ABQ + \angle BAQ + \angle AQB = \angle ABQ + z + \operatorname{Arcsin}(\frac{xz}{y}) = \pi \Rightarrow \angle ABQ = \pi - z - \operatorname{Arcsin}(\frac{xz}{y}) \\ &\operatorname{Area of} \ ABQT = xy\sin(\angle ABQ) = xy\sin(\pi - z - \operatorname{Arcsin}(\frac{xz}{y})) = xy\sin(z + \operatorname{Arcsin}(\frac{xz}{y})) \end{split}$$

- 10. **(E)** $\cot^2 x + 1 = \csc^2 x \Rightarrow \cot^2 x 1 = \csc^2 x 2$
- 11. **(D)** Four of the functions $(\sin x, \tan x, \csc x, \text{ and } \cot x)$ are odd functions, which means they satisfy the condition f(-x) = -f(x). $\frac{4}{6} = \frac{2}{3}$.
- 12. **(C)** $2007 > 2008 3\cot^2\theta \Rightarrow 3\cot^2\theta > 1 \Rightarrow |\cot\theta| > \frac{1}{\sqrt{3}} \Rightarrow |\tan\theta| < \sqrt{3}$, which is true for $\theta \in [0, \frac{\pi}{3}) \cup (\frac{2\pi}{3}, \frac{4\pi}{3}) \cup (\frac{5\pi}{3}, 2\pi)$, a total length of $\frac{4\pi}{3}$ out of 2π .

- 13. **(D)** $(-2007, 6267^{\circ}) = (-2007, 17 \cdot 360^{\circ} + 147^{\circ}) = (-2007, 147^{\circ}) = (2007, 327^{\circ})$
- 14. (B) The minimum value of a function of the form $f(x) = a \sin x + b \cos x$ is $-\sqrt{a^2 + b^2}$.
- 15. **(D)** By the law of cosines, $c^2 = a^2 + b^2 2ab\cos C = 15^2 + 16^2 2(15)(16)(-\frac{1}{2}) = 225 + 256 + 240 = 721$ Sum of digits = 7 + 2 + 1 = 10
- 16. **(A)** $\cos \theta = -\sqrt{1 \sin^2 \theta} = -\sqrt{1 (\frac{3}{5})^2} = -\frac{4}{5} \Rightarrow \cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{4}{3}$
- 17. **(D)** (A) and (B) do not guarantee $\cos \alpha = \cos \beta$, and (C) does not guarantee that both values be in the interval $[0, 2\pi)$. (D) guarantees both.
- 18. (D) The minimum value of the sine function is -1 and its maximum value is 1, so the minimum value of f(x) is -2007(1) + 2007 = 0 and its maximum value is -2007(-1) + 2007 = 4014.
- 19. (D) By the cosine sum formula, $\cos(3\theta)\cos(28\theta) \sin(3\theta)\sin(28\theta) = \cos(3\theta + 28\theta) = \cos(3\theta)$
- 20. (C) $f(\frac{3\pi}{4}) f(\frac{7\pi}{6}) = (\cos\frac{3\pi}{4} \sin\frac{3\pi}{4}) (\cos\frac{7\pi}{6} \sin\frac{7\pi}{6}) = (-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}) (-\frac{\sqrt{3}}{2} + \frac{1}{2}) = \frac{\sqrt{3}}{2} \sqrt{2} \frac{1}{2}$
- 21. (B) The coordinates represent the Cartesian points (1,1) and (1,-1), respectively, which are separated by a distance of 2.
- 22. **(A)** Let $\vec{u} = i + 2j$ and $\vec{v} = 3i 5j$. Then $\cos^2 \theta = (\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|})^2 = (\frac{1 \cdot 3 + 2 \cdot (-5)}{\sqrt{1^2 + 2^2} \sqrt{3^2 + (-5)^2}})^2 = \frac{(-7)^2}{5 \cdot 34} = \frac{49}{170}$ $a + b = 49 + 170 = 219 \Rightarrow \text{Sum of digits} = 2 + 1 + 9 = 12$
- 23. (C) The period of $\sin(\frac{4x}{5})$ is $2\pi \cdot \frac{5}{4} = \frac{5\pi}{2}$, and the period of $\cos(\frac{x}{3})$ is $2\pi \cdot 3 = 6\pi$. The least common multiple of these two periods is 30π .
- 24. (A) The range of $\sin x$ is [-1,1]; no value of x can produce a sine of $\frac{3}{2}$.
- 25. (A) Since the range of $\tan x$ is all real numbers, so is the domain of $f(x) = \arctan x$.
- 26. **(A)** $\cot x \cos 2x + \sin 2x = \frac{\cos x}{\sin x} (\cos^2 x \sin^2 x) + 2\cos x \sin x = \frac{\cos^3 x}{\sin x} \cos x \sin x + 2\cos x \sin x$ $= \frac{\cos^3 x}{\sin x} + \cos x \sin x = \frac{\cos^3 x + \cos x \sin^2 x}{\sin x} = \frac{\cos x (\cos^2 x + \sin^2 x)}{\sin x} = \frac{\cos x}{\sin x} = \cot x$
- 27. **(B)** Since α and β sum to π , $\cos \alpha = \cos(\pi \beta) = -\cos \beta$ and $\sin \alpha = \sin(\pi \beta) = \sin \beta$. (A), (C), and (D) follow directly from these relations; (B) contradicts $\sin \alpha = \sin \beta$.
- 28. (D) $(\cos \theta + \sin \theta)^3 = (\cos \theta + \sin \theta)(\cos \theta + \sin \theta)^2 = (\cos \theta + \sin \theta)(\cos^2 \theta + 2\cos \theta \sin \theta + \sin^2 \theta)$ = $(\cos \theta + \sin \theta)(1 + \sin 2\theta)$

29. **(B)**
$$\cos \alpha = \frac{7}{8}$$
 and $0 < \alpha < \frac{\pi}{2}$, so $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{49}{64}} = \frac{\sqrt{15}}{8}$.
 $\sin \beta = \frac{12}{13}$ and $\frac{\pi}{2} < \beta < \pi$, so $\cos \beta = -\sqrt{1 - \sin^2 \beta} = -\sqrt{1 - \frac{144}{169}} = -\frac{5}{13}$.
 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = (\frac{7}{8})(-\frac{5}{13}) + (\frac{\sqrt{15}}{8})(\frac{12}{13}) = \frac{12\sqrt{15} - 35}{104}$
 $a + b + q + t + 90 = 12 + 15 + 35 + 104 + 90 = 256 \Rightarrow \text{Sum of digits} = 2 + 5 + 6 = 13$

30. **(B)**
$$\sin \pi = 0$$