Unless otherwise specified, equations are to be solved over the real numbers.

A capitalized inverse trigonometric function (e.g. Arcsin) denotes that the range of the function is restricted to its traditional subset of \mathbb{R} in order that the function return a unique output for each input.

Answer choice (E) NOTA means "none of these answers."

No calculators are permitted on this test.

- 1. Which of the following is *not* a trigonometric identity (where both sides are defined)?
 - (A) $1 \sin^2 \alpha = \cos^2 \alpha$ (B) $\cos(\alpha + \beta) \sin \alpha \sin \beta = \cos \alpha \cos \beta$
 - (C) $\sin(\alpha + \beta) \sin \alpha \cos \beta = \cos \alpha \sin \beta$ (D) $\tan \alpha = \frac{1}{2}(1 \tan^2 \alpha) \tan 2\alpha$
 - (E) NOTA
- 2. Which of the following best describes the polar graph of $r = 3 28 \cos \theta$?
 - (A) Limacon with an inner loop (B) Cardioid
 - (C) Dimpled limacon (D) Lemniscate
 - (E) NOTA
- 3. How many petals does the polar graph of $r = 7\cos(2007\theta)$ have?
 - (A) 7 (B) 14 (C) 2007 (D) 4014 (E) NOTA

4. Which of the following is true?

- (A) $\operatorname{Arctan}(-\sqrt{3}) = \frac{2\pi}{3}$ (B) $\operatorname{Arctan} 0 = \frac{\pi}{2}$
- (C) $\operatorname{Arccot}(-\sqrt{3}) = \frac{5\pi}{6}$ (D) $\operatorname{Arccot}(-\sqrt{3}) = -\frac{\pi}{6}$
- (E) NOTA

5. An angle θ with its terminal side in the second quadrant has a cosine of $-\frac{20}{29}$. If $\tan \theta + \sec \theta = \frac{a}{b}$ with a and b relatively prime integers and b > 0, find a - b.

(A) -7 (B) -3 (C) 3 (D) 7 (E) NOTA

6. $\cos 15^{\circ}$ can be written as $a\sqrt{b+\sqrt{c}}$ with b and c integers with no square factors other than 1. Find the sum of the digits of $(\frac{c}{a})^{\frac{b}{a}}$.

(A) 9 (B) 18 (C) 19 (D) 27 (E) NOTA

7. In triangle ABC, side *a* has length 14, side *b* has length 26, and angle *C*, opposite side *c*, has measure 30° . If the area of triangle ABC can be written as $a\sqrt{b}$ with *b* an integer with no square factors other than 1, find the sum of the digits of the product *ab*.

(A) 9 (B) 10 (C) 11 (D) 12 (E) NOTA

- 8. What is the period of the function $f(x) = \cos(2007\pi x)$?
 - (A) $\frac{1}{2007}$ (B) $\frac{2}{2007}$ (C) $\frac{1}{2007\pi}$ (D) $\frac{2}{2007\pi}$ (E) NOTA
- 9. In parallelogram ABQT, the side connecting A to B has length x, the side connecting B to Q has length y, and the sine of angle BAQ is z. Which of the following is equivalent to the area of parallelogram ABQT?
 - (A) $xy\sin(z + \operatorname{Arcsin}(\frac{xz}{y}))$ (B) $xy\sin(\operatorname{Arcsin} z + \operatorname{Arcsin}(\frac{x\operatorname{Arcsin} z}{y}))$
 - (C) $xy\sin(z + \operatorname{Arcsin}(\frac{xy}{z}))$ (D) $xy\sin(z + \operatorname{Arcsin}(\frac{x}{y}))$
 - (E) NOTA
- 10. Where defined, $\cot^2 x 1$ is equivalent to which of the following?
 - (A) $\csc x$ (B) $\csc^2 x$ (C) $1 \csc x$ (D) $2\cos^2 x$ (E) NOTA

11. If one of the six trigonometric functions $\sin x$, $\cos x$, $\tan x$, $\csc x$, $\sec x$, or $\cot x$ is chosen at random, what is the probability that for the chosen function f, f(x) + f(-x) = 0 for any x in the domain of f? (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) NOTA

12. If a value of θ is chosen at random from $(0, 2\pi)$, what is the probability that $2007 > 2008 - 3 \cot^2 \theta$? (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{6}$ (E) NOTA

13. In which quadrant does the point with polar coordinates $(-2007, 6267^{\circ})$ lie?

(A) I (B) II (C) III (D) IV (E) NOTA

14. What is the minimum value of the function $f(x) = 2007 \cos x - 2007 \sin x$? (A) -4014 (B) $-2007\sqrt{2}$ (C) -2007 (D) 0 (E) NOTA

15. In triangle ABC, side a has length 15, side b has length 16, and the measure of angle C, opposite side c, has measure 120°. What is the sum of the digits in the square of the length of side c?
(A) 7 (B) 8 (C) 9 (D) 10 (E) NOTA

- 16. If $\sin \theta = \frac{3}{5}$ and the terminal side of θ lies in the second quadrant, find $\cot \theta$. (A) $-\frac{4}{3}$ (B) $-\frac{4}{5}$ (C) $\frac{3}{4}$ (D) $\frac{4}{3}$ (E) NOTA
- 17. If α and β are distinct values in the interval $[0, 2\pi)$ and $\cos \alpha = \cos \beta$, which of the following must be true?
 - (A) $\alpha \beta = \pi$ (B) $|\alpha \beta| = \pi$ (C) $\alpha \beta = 2\pi$ (D) $\alpha + \beta = 2\pi$ (E) NOTA

(D) [0, 4014]

18. What is the range of the function $f(x) = -2007 \sin(2007x + 4014) + 2007$?

(A) [-4014, 4014] (B) [-2007, 2007] (C) [0, 2007]

19.	Whi	Which of the following is equivalent to $\cos(3\theta)\cos(28\theta) - \sin(3\theta)\sin(28\theta)$?							
	(A)	$\sin(25\theta)$	(B) $\cos(25\theta)$	(C)	$\sin(31\theta)$	(D)	$\cos(31\theta)$	(E)	NOTA
20.	If f	$(x) = \cos x - \sin x$	x, find $f(\frac{3\pi}{4}) - f(\frac{7\pi}{6})$).					
	(A)	$\frac{\sqrt{3}}{2} - \frac{1}{2}$	$(B) \frac{1}{2} - \frac{\sqrt{3}}{2}$	(C)	$\frac{\sqrt{3}}{2} - \sqrt{2} - \frac{1}{2}$	(D)	$\frac{1}{2} - \sqrt{2} - \frac{\sqrt{3}}{2}$	(E)	NOTA
21.	What is the distance between the polar coordinates $(\sqrt{2}, 45^{\circ})$ and $(\sqrt{2}, 315^{\circ})$?								
	(A)	$\sqrt{2}$	(B) 2	(C)	$2\sqrt{2}$	(D)	270	(E)	NOTA
22. If the square of the cosine of the smaller angle between the vectors $i + 2j$ and $3i - 5$								i is $\frac{a}{b}$	with a and
	b relatively prime natural numbers, find the sum of the digits of $a + b$.								
	(A)	12	(B) 13	(C)	14	(D)	15	(E)	NOTA
23.	What is the period of the function $f(x) = \sin(\frac{4x}{5}) + \cos(\frac{x}{3})$?								
	(A)	5π	(B) 15π	(C)	30π	(D)	60π	(E)	NOTA
24.	. How many values of x are there in $[0, 2\pi)$ such that $\sin x = \frac{3}{2}$?								
	(A)	0		(B)	2				
	(C)	4		(D)	Infinitely many				
	(E)	NOTA							
25.	5. What is the domain of $f(x) = \arctan x$?								
	(A)	Real numbers		(B)	$\{x \mid x \neq \frac{(2n+1)\pi}{2}$, for a	all integers n		
	(C)	$\{x \mid x \neq \frac{n\pi}{2}, \text{for a }$	all integers n }	(D)	$\{x \ x \le \frac{\pi}{2}\}$				
	(E)	NOTA							

26. Where defined, $\cot x \cos 2x + \sin 2x$ is equivalent to which of the following?

(A) $\cot x$ (B) $\tan x$ (C) $\cos x$ (D) $\csc x$ (E) NOTA

27. If α and β are the measures of two consecutive angles of a parallelogram, which of the following is *not* true?

- (A) $\cos \alpha + \cos \beta = 0$ (B) $\sin \alpha + \sin \beta = 0$
- (C) $\sin^2 \alpha \sin^2 \beta = \cos^2 \alpha \cos^2 \beta$ (D) $\sin 2\alpha = \sin \beta \cos \alpha \sin \alpha \cos \beta$

(E) NOTA

(E) NOTA

- 28. Which of the following is equivalent to $(\cos \theta + \sin \theta)^3$?
 - (A) $\cos\theta + \sin\theta$ (B) $\cos^3\theta + \sin^3\theta$ (C) $(-\theta + i\theta)(1 - 1i\theta)(0)$ (D) $(-\theta + i\theta)(1 + i\theta)$
 - (C) $(\cos\theta + \sin\theta)(1 \frac{1}{2}\sin 2\theta)$ (D) $(\cos\theta + \sin\theta)(1 + \sin 2\theta)$
 - (E) NOTA

29. Suppose $\cos \alpha = \frac{7}{8}$, $\sin \beta = \frac{12}{13}$, and $0 < \alpha < \frac{\pi}{2} < \beta < \pi$. If $\cos(\alpha - \beta)$ is expressed as $\frac{a\sqrt{b}-q}{t}$, with a, b, q, t natural numbers with no common divisor and $a\sqrt{b}$ in its most simplified form, find the sum of the digits of a + b + q + t + 90.

- (A) 12 (B) 13 (C) 14 (D) 15 (E) NOTA
- 30. Evaluate: $\sin\pi$
 - (A) -1 (B) 0 (C) $\frac{\sqrt{2}}{2}$ (D) 1 (E) NOTA