#1 Calculus – Hustle MAΘ National Convention 2007

A particle moves according to the equations:

$$x(t) = 4t^3 + 6t^2 - 24t - 24$$

$$y(t) = 2t^3 + 3t^2 - 12t + 12$$

$$z(t) = t^3 + 6t^2 + 12t + 20$$

At what instant(s) of time [value(s) of t] is the particle not moving?

NOTE: Time can be negative.

If no such instant of time, write none.

#1 Calculus – Hustle MA® National Convention 2007

A particle moves according to the equations:

$$x(t) = 4t^3 + 6t^2 - 24t - 24$$

$$y(t) = 2t^3 + 3t^2 - 12t + 12$$

$$z(t) = t^3 + 6t^2 + 12t + 20$$

At what instant(s) of time [value(s) of t] is the particle not moving?

NOTE: Time can be negative.

If no such instant of time, write none.

Answer : ______

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#1 Calculus – Hustle MAΘ National Convention 2007

A particle moves according to the equations:

$$x(t) = 4t^3 + 6t^2 - 24t - 24$$

$$y(t) = 2t^3 + 3t^2 - 12t + 12$$

$$z(t) = t^3 + 6t^2 + 12t + 20$$

At what instant(s) of time [value(s) of t] is the particle not moving?

NOTE: Time can be negative.

If no such instant of time, write none.

#1 Calculus – Hustle MA⊕ National Convention 2007

A particle moves according to the equations:

$$x(t) = 4t^3 + 6t^2 - 24t - 24$$

$$y(t) = 2t^3 + 3t^2 - 12t + 12$$

$$z(t) = t^3 + 6t^2 + 12t + 20$$

At what instant(s) of time [value(s) of t] is the particle not moving?

NOTE: Time can be negative.

If no such instant of time, write none.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#2 Calculus – Hustle MA⊕ National Convention 2007

Evaluate: $\sum_{n=1}^{\infty} \frac{(i\pi)^n}{n!}$

#2 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\sum_{n=1}^{\infty} \frac{(i\pi)^n}{n!}$

Answer : ______

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#2 Calculus – Hustle MA⊕ National Convention 2007

Evaluate: $\sum_{n=1}^{\infty} \frac{(i\pi)^n}{n!}$

#2 Calculus – Hustle MA® National Convention 2007

Evaluate: $\sum_{n=1}^{\infty} \frac{(i\pi)^n}{n!}$

Answer : ______

Answer : _____

Round 1 2 3 4 5

#3 Calculus – Hustle MAΘ National Convention 2007

For the equation $x^3 + y^3 + 3x^2y - 3x^2 + 3xy^2 = -11$, using implicit differentiation find dy/dx at the point (2,-1).

#3 Calculus – Hustle MA⊕ National Convention 2007

For the equation $x^3 + y^3 + 3x^2y - 3x^2 + 3xy^2 = -11$, using implicit differentiation find dy/dx at the point (2,-1).

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#3 Calculus – Hustle MA® National Convention 2007

For the equation $x^3 + y^3 + 3x^2y - 3x^2 + 3xy^2 = -11$, using implicit differentiation find dy/dx at the point (2,-1).

#3 Calculus – Hustle MA® National Convention 2007

For the equation $x^3 + y^3 + 3x^2y - 3x^2 + 3xy^2 = -11$, using implicit differentiation find dy/dx at the point (2,-1).

Answer : _____

Round 1 2 3 4 5

Answer : ______

#4 Calculus – Hustle MAΘ National Convention 2007

Let *A* be the number of infinite discontinuities and *B* be the number of removable discontinuities in the

function
$$f(x) = \frac{x^4 - 2x^2 + 1}{x^3 - x}$$
.

What is A - B?

#4 Calculus – Hustle MAΘ National Convention 2007

Let *A* be the number of infinite discontinuities and *B* be the number of removable discontinuities in the

function
$$f(x) = \frac{x^4 - 2x^2 + 1}{x^3 - x}$$
.

What is A - B?

Answer : ______

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#4 Calculus – Hustle MAΘ National Convention 2007

Let *A* be the number of infinite discontinuities and *B* be the number of removable discontinuities in the

function
$$f(x) = \frac{x^4 - 2x^2 + 1}{x^3 - x}$$
.

What is A - B?

#4 Calculus – Hustle MAΘ National Convention 2007

Let *A* be the number of infinite discontinuities and *B* be the number of removable discontinuities in the

function
$$f(x) = \frac{x^4 - 2x^2 + 1}{x^3 - x}$$
.

What is A - B?

Answer:

Round 1 2 3 4 5

Answer : _____

#5 Calculus – Hustle MA⊕ National Convention 2007

Given $24 m^2$ of cardboard, you are to construct an open box (that is, a box with no top). In cubic meters, what is the largest volume this box can occupy?

#5 Calculus – Hustle MAΘ National Convention 2007

Given $24 m^2$ of cardboard, you are to construct an open box (that is, a box with no top). In cubic meters, what is the largest volume this box can occupy?

Answer	:		
--------	---	--	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#5 Calculus – Hustle MAΘ National Convention 2007

Given $24 m^2$ of cardboard, you are to construct an open box (that is, a box with no top). In cubic meters, what is the largest volume this box can occupy?

#5 Calculus – Hustle MA® National Convention 2007

Given $24 m^2$ of cardboard, you are to construct an open box (that is, a box with no top). In cubic meters, what is the largest volume this box can occupy?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#6 Calculus – Hustle MAΘ National Convention 2007

What is the tangent line approximation of $\sqrt{14}$, using $\sqrt{16} = 4$?

#6 Calculus – Hustle MAΘ National Convention 2007

What is the tangent line approximation of $\sqrt{14}$, using $\sqrt{16} = 4$?

Answer	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#6 Calculus – Hustle MAΘ National Convention 2007

What is the tangent line approximation of $\sqrt{14}$, using $\sqrt{16} = 4$?

#6 Calculus – Hustle MAΘ National Convention 2007

What is the tangent line approximation of $\sqrt{14}$, using $\sqrt{16} = 4$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#7 Calculus – Hustle MAΘ National Convention 2007

A circle's radius is growing at a rate of 3 m/s. At time t = 0 s the radius of the circle is 1 m. How fast is the area of the circle growing (in m^2/s) at time t = 3 s?

Answer : _____

Round 1 2 3 4 5

#7 Calculus – Hustle MAΘ National Convention 2007

A circle's radius is growing at a rate of 3 m/s. At time t = 0 s the radius of the circle is 1 m. How fast is the area of the circle growing (in m^2/s) at time t = 3 s?

Answer : _____

Round 1 2 3 4 5

#7 Calculus – Hustle MAΘ National Convention 2007

A circle's radius is growing at a rate of 3 m/s. At time t = 0 s the radius of the circle is 1 m. How fast is the area of the circle growing (in m^2/s) at time t = 3 s?

Answer : _____

Round 1 2 3 4 5

#7 Calculus – Hustle MA© National Convention 2007

A circle's radius is growing at a rate of 3 m/s. At time t = 0 s the radius of the circle is 1 m. How fast is the area of the circle growing (in m^2/s) at time t = 3 s?

Answer : _____

#8 Calculus – Hustle MAΘ National Convention 2007

Let
$$A = \begin{pmatrix} \frac{1}{2}e^{2 \cdot \ln x} & 2x - 3 & x - 1 \\ 0 & 3 & x^2 \\ -2 & \ln(4x) & (2x - 3)^3 \end{pmatrix}$$
.

Now replace every entry in *A* with its derivative with respect to x, call this new matrix B. What is the determinant of B?

Answer : _____

Round 1 2 3 4 5

#8 Calculus – Hustle MA® National Convention 2007

Let
$$A = \begin{pmatrix} \frac{1}{2}e^{2 \cdot \ln x} & 2x - 3 & x - 1 \\ 0 & 3 & x^2 \\ -2 & \ln(4x) & (2x - 3)^3 \end{pmatrix}$$
.

Now replace every entry in *A* with its derivative with respect to x, call this new matrix B. What is the determinant of B?

Answer : _____

Round 1 2 3 4 5

#8 Calculus – Hustle MAΘ National Convention 2007

Let
$$A = \begin{pmatrix} \frac{1}{2}e^{2 \cdot \ln x} & 2x - 3 & x - 1 \\ 0 & 3 & x^2 \\ -2 & \ln(4x) & (2x - 3)^3 \end{pmatrix}$$
.

Now replace every entry in *A* with its derivative with respect to x, call this new matrix B. What is the determinant of B?

Answer : _____

Round 1 2 3 4 5

#8 Calculus – Hustle MAΘ National Convention 2007

Let
$$A = \begin{pmatrix} \frac{1}{2}e^{2\ln x} & 2x-3 & x-1 \\ 0 & 3 & x^2 \\ -2 & \ln(4x) & (2x-3)^3 \end{pmatrix}$$
.

Now replace every entry in A with its derivative with respect to x, call this new matrix B. What is the determinant of B?

Answer : _____

#9 Calculus – Hustle MAΘ National Convention 2007

Let $f(x) = \sin(ix)$, what is $f^{(19)}(x)$? (NOTE: i is the imaginary unit)

#9 Calculus – Hustle MAΘ National Convention 2007

Let $f(x) = \sin(ix)$, what is $f^{(19)}(x)$? (NOTE: i is the imaginary unit)

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#9 Calculus – Hustle MAΘ National Convention 2007

Let $f(x) = \sin(ix)$, what is $f^{(19)}(x)$? (NOTE: i is the imaginary unit)

#9 Calculus – Hustle MAΘ National Convention 2007

Let $f(x) = \sin(ix)$, what is $f^{(19)}(x)$? (NOTE: i is the imaginary unit)

Answer : _____

Answer : _____

Round 1 2 3 4 5

#10 Calculus – Hustle MAΘ National Convention 2007

A particle moves with acceleration $a(t) = \cos\left(\frac{t}{2}\right)$. The velocity of this particle is zero at time t = 0. What is the particle's speed at time $t = 3\pi$?

#10 Calculus – Hustle
MA® National Convention 2007

A particle moves with acceleration $a(t) = \cos\left(\frac{t}{2}\right)$. The velocity of this particle is zero at time t = 0. What is the particle's speed at time $t = 3\pi$?

Amarron		
Answer	•	

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#10 Calculus – Hustle MA® National Convention 2007

A particle moves with acceleration $a(t) = \cos\left(\frac{t}{2}\right)$. The velocity of this particle is zero at time t = 0. What is the particle's speed at time $t = 3\pi$?

#10 Calculus – Hustle MAΘ National Convention 2007

A particle moves with acceleration $a(t) = \cos\left(\frac{t}{2}\right)$. The velocity of this particle is zero at time t = 0. What is the particle's speed at time $t = 3\pi$?

Answer : ______

Round 1 2 3 4 5

Answer : _____

#11 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\lim_{h\to\infty} \left(1+\frac{3}{h}\right)^h$

#11 Calculus – Hustle MA® National Convention 2007

Evaluate: $\lim_{h \to \infty} \left(1 + \frac{3}{h} \right)^h$

Answer : _____

Round 1 2 3 4 5

Answer : ______

Round 1 2 3 4 5

#11 Calculus – Hustle MA⊕ National Convention 2007

Evaluate: $\lim_{h\to\infty} \left(1 + \frac{3}{h}\right)^h$

#11 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\lim_{h \to \infty} \left(1 + \frac{3}{h} \right)^h$

Answer : ______

Answer : _____

Round 1 2 3 4 5

#12 Calculus – Hustle MA© National Convention 2007

Evaluate: $\int_{3}^{6} \frac{2}{x^2 - 1} dx$

#12 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int_{3}^{6} \frac{2}{x^2 - 1} dx$

Answer:

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#12 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int_{3}^{6} \frac{2}{x^2 - 1} dx$

#12 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int_{3}^{6} \frac{2}{x^2 - 1} dx$

Answer : ______

Answer : _____

Round 1 2 3 4 5

#13 Calculus – Hustle MA© National Convention 2007

Let
$$f(x) = x^2 + 1$$
,
 $g(x) = \int f'(f(x)) \cdot f'(x) dx$
and $g(0) = 2$, what is $g(x)$?

#13 Calculus – Hustle MA© National Convention 2007

Let
$$f(x) = x^2 + 1$$
,
 $g(x) = \int f'(f(x)) \cdot f'(x) dx$
and $g(0) = 2$, what is $g(x)$?

A ~	_		
Answer	•		
	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#13 Calculus – Hustle MA® National Convention 2007

Let
$$f(x) = x^2 + 1$$
,
 $g(x) = \int f'(f(x)) \cdot f'(x) dx$
and $g(0) = 2$, what is $g(x)$?

#13 Calculus – Hustle MAΘ National Convention 2007

Let
$$f(x) = x^2 + 1$$
,
 $g(x) = \int f'(f(x)) \cdot f'(x) dx$
and $g(0) = 2$, what is $g(x)$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#14 Calculus – Hustle MA© National Convention 2007

For $f(x) = e^{2x} - 10e^x + 12x$, what is the greatest value of x for which the tangent line is horizontal?

#14 Calculus – Hustle MAO National Convention 2007

For $f(x) = e^{2x} - 10e^x + 12x$, what is the greatest value of x for which the tangent line is horizontal?

Answer	•		
	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#14 Calculus – Hustle MA® National Convention 2007

For $f(x) = e^{2x} - 10e^x + 12x$, what is the greatest value of x for which the tangent line is horizontal?

#14 Calculus – Hustle MAΘ National Convention 2007

For $f(x) = e^{2x} - 10e^x + 12x$, what is the greatest value of x for which the tangent line is horizontal?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#15 Calculus – Hustle MA© National Convention 2007

On what interval(s) is

$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1$$
 both concave

up and decreasing? Please, express your answer in interval notation i.e.

$$x \in (a,b) \cup (c,d)$$

#15 Calculus – Hustle MAΘ National Convention 2007

On what interval(s) is

$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1$$
 both concave

up and decreasing? Please, express your answer in interval notation i.e.

$$x \in (a,b) \cup (c,d)$$

Answer : ______

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#15 Calculus – Hustle MA© National Convention 2007

On what interval(s) is

$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1$$
 both concave

up and decreasing? Please, express your answer in interval notation i.e.

$$x \in (a,b) \cup (c,d)$$

#15 Calculus – Hustle MA® National Convention 2007

On what interval(s) is

$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1$$
 both concave

up and decreasing? Please, express your answer in interval notation i.e.

$$x \in (a,b) \cup (c,d)$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#16 Calculus – Hustle MA© National Convention 2007

What is the area between the curve $y = \sin(x)$ and the x-axis, from $x = -\pi$ to $x = \pi$?

#16 Calculus – Hustle MAΘ National Convention 2007

What is the area between the curve $y = \sin(x)$ and the x-axis, from $x = -\pi$ to $x = \pi$?

Answer	•		
$\Delta HSWCI$	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#16 Calculus – Hustle MA® National Convention 2007

What is the area between the curve $y = \sin(x)$ and the x-axis, from $x = -\pi$ to $x = \pi$?

#16 Calculus – Hustle MA© National Convention 2007

What is the area between the curve $y = \sin(x)$ and the x-axis, from $x = -\pi$ to $x = \pi$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#17 Calculus – Hustle MAO National Convention 2007

Evaluate: $\int \frac{\sec^2 x}{1 + \tan^2 x} dx$

#17 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int \frac{\sec^2 x}{1 + \tan^2 x} dx$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#17 Calculus – Hustle MA© National Convention 2007

Evaluate:
$$\int \frac{\sec^2 x}{1 + \tan^2 x} dx$$

#17 Calculus – Hustle MA© National Convention 2007

Evaluate:
$$\int \frac{\sec^2 x}{1 + \tan^2 x} dx$$

Answer : _____

Answer : ______

Round 1 2 3 4 5

#18 Calculus – Hustle MAΘ National Convention 2007

What is the arc length of the curve defined by $x(t) = 3t^2$, $y(t) = 4t^2$ from t = 0 to t = 2?

#18 Calculus – Hustle MAO National Convention 2007

What is the arc length of the curve defined by $x(t) = 3t^2$, $y(t) = 4t^2$ from t = 0 to t = 2?

Answer	•		
AIISWEI	•		

Round 1 2 3 4 5

Answer : ______

Round 1 2 3 4 5

#18 Calculus – Hustle MA® National Convention 2007

What is the arc length of the curve defined by $x(t) = 3t^2$, $y(t) = 4t^2$ from t = 0 to t = 2?

#18 Calculus – Hustle MA© National Convention 2007

What is the arc length of the curve defined by $x(t) = 3t^2$, $y(t) = 4t^2$ from t = 0 to t = 2?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#19 Calculus – Hustle MA© National Convention 2007

Evaluate: $\int_{0}^{\infty} xe^{-x^{2}} dx$

#19 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int_{0}^{\infty} x e^{-x^2} dx$

Answer	•		
A113 W C1	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#19 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\int_{0}^{\infty} x e^{-x^2} dx$

#19 Calculus – Hustle MA® National Convention 2007

Evaluate: $\int_{0}^{\infty} xe^{-x^{2}} dx$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#20 Calculus – Hustle MAΘ National Convention 2007

What is the maximum value of the function $f(x) = -x^3 + 3x + 1$ for $x \in [-3, 3]$?

#20 Calculus – Hustle MA⊕ National Convention 2007

What is the maximum value of the function $f(x) = -x^3 + 3x + 1$ for $x \in [-3,3]$?

Answer	•		
A113WC1	•		

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#20 Calculus – Hustle MA© National Convention 2007

What is the maximum value of the function $f(x) = -x^3 + 3x + 1$ for $x \in [-3, 3]$?

#20 Calculus – Hustle MA© National Convention 2007

What is the maximum value of the function $f(x) = -x^3 + 3x + 1$ for $x \in [-3, 3]$?

Answer : _____

Round 1 2 3 4 5

Answer : ______

#21	Calc	ulus –	Hustle	
ΜA	Θ Na	tional	Convention	2007

What is the first derivative of $\sin^2(x^2)$ with respect to x?

#21 Calculus – Hustle MA⊕ National Convention 2007

What is the first derivative of $\sin^2(x^2)$ with respect to x?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#21 Calculus – Hustle MAQ National Convention 2007

What is the first derivative of $\sin^2(x^2)$ with respect to x?

#21 Calculus – Hustle MAQ National Convention 2007

What is the first derivative of $\sin^2(x^2)$ with respect to x?

Answer : _____

Round 1 2 3 4 5

Answer : ______

#22 Calculus – Hustle MAΘ National Convention 2007

Let f(x) be a differentiable, invertible function, such that f(2) = 3. Let $g(x) = f^{-1}(x)$. What is f'(2) given that g'(2) = 7 and g'(3) = 11?

#22 Calculus – Hustle MA⊕ National Convention 2007

Let f(x) be a differentiable, invertible function, such that f(2) = 3. Let $g(x) = f^{-1}(x)$. What is f'(2) given that g'(2) = 7 and g'(3) = 11?

Answer	•			
AIISWCI	•			

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#22 Calculus – Hustle MA© National Convention 2007

Let f(x) be a differentiable, invertible function, such that f(2) = 3. Let $g(x) = f^{-1}(x)$. What is f'(2) given that g'(2) = 7 and g'(3) = 11?

#22 Calculus – Hustle MA® National Convention 2007

Let f(x) be a differentiable, invertible function, such that f(2) = 3. Let $g(x) = f^{-1}(x)$. What is f'(2) given that g'(2) = 7 and g'(3) = 11?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#23 Calculus – Hustle MA© National Convention 2007

Evaluate: $\lim_{h\to 0} \frac{(4+h)^2 - (4-h)^2}{2h}$

#23 Calculus – Hustle MA© National Convention 2007

Evaluate: $\lim_{h\to 0} \frac{(4+h)^2 - (4-h)^2}{2h}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#23 Calculus – Hustle MA® National Convention 2007

Evaluate: $\lim_{h\to 0} \frac{(4+h)^2 - (4-h)^2}{2h}$

#23 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\lim_{h\to 0} \frac{(4+h)^2 - (4-h)^2}{2h}$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#24 Calculus – Hustle MA® National Convention 2007

Evaluate: $\lim_{x \to 0} \frac{\sin(x) - \cos(x) + 1}{x^3 - 3x^2 + 3x}$

#24 Calculus – Hustle MA® National Convention 2007

Evaluate: $\lim_{x\to 0} \frac{\sin(x) - \cos(x) + 1}{x^3 - 3x^2 + 3x}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#24 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\lim_{x\to 0} \frac{\sin(x) - \cos(x) + 1}{x^3 - 3x^2 + 3x}$

#24 Calculus – Hustle MAΘ National Convention 2007

Evaluate: $\lim_{x\to 0} \frac{\sin(x) - \cos(x) + 1}{x^3 - 3x^2 + 3x}$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#25 Calculus – Hustle MA© National Convention 2007

What is f'(1) if $f(x) = (-x-1)^3 (x+1)^2 (2x-3)$?

#25 Calculus – Hustle MA® National Convention 2007

What is f'(1) if $f(x) = (-x-1)^3 (x+1)^2 (2x-3)$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#25 Calculus – Hustle MA⊕ National Convention 2007

What is f'(1) if $f(x) = (-x-1)^3 (x+1)^2 (2x-3)$?

#25 Calculus – Hustle MAΘ National Convention 2007

What is f'(1) if $f(x) = (-x-1)^3 (x+1)^2 (2x-3)$?

Answer : _____

Answer : _____

Round 1 2 3 4 5