2007 National Mu Alpha Theta Convention

Geometry Hustle Solutions

1. 36π $A = \pi \left(\frac{12}{2}\right)^2 = 36\pi$

2. 144
$$16^2 + x^2 = (x+2)^2$$
; $256 + x^2 = x^2 + 4x + 4$; $252 = 4x$; $x = 63$
Sides are 16, 63, and 65, so perimeter = $16 + 63 + 65 = 144$

3. 28
$$\frac{n(n-1)}{2} = \frac{8(8-1)}{2} = 28$$

4.
$$12\sqrt{3}$$
 Trial and error can be used, or if 2x is hypotenuse, then
 $2x + x + x\sqrt{3} = 18 + 18\sqrt{3}$; $x(3 + \sqrt{3}) = 18 + 18\sqrt{3}$; $x = \frac{18 + 18\sqrt{3}}{3 + \sqrt{3}}$
Rationalize denominator, so $x = \frac{18 + 18\sqrt{3}}{3 + \sqrt{3}} \left(\frac{3 - \sqrt{3}}{3 - \sqrt{3}}\right) = \frac{54 - 18\sqrt{3} + 54\sqrt{3} - 54}{9 - 3} = \frac{36\sqrt{3}}{6} = 6\sqrt{3}$. Hypotenuse $= 2x = 12\sqrt{3}$.

5. 36 Parts are
$$\frac{4}{15}$$
 and $\frac{11}{15}$ of the length of the original segment;
 $25\left(\frac{4}{15}\right) = \frac{20}{3} = 6.\overline{6}$ and $25\left(\frac{11}{15}\right) = \frac{55}{3} = 18.\overline{3}$;
 $18.\overline{3} - 6.\overline{6} < K < 18.\overline{3} + 6.\overline{6}$, $11.\overline{6} < K < 25$
Since K is an integer, min and max of K is 12 and 24; $12 + 24 = 36$

6. 300π Apothem of hexagon = radius of inscribed circle = $\frac{20}{2}\sqrt{3} = 10\sqrt{3}$ Area of circle = 300π

7.
$$\frac{1}{4}$$
 or .25 $KV = \pi \left(\frac{r}{6}\right)^2 (9H) = \pi r^2 H\left(\frac{1}{4}\right)$

8. 180 360/n = 2, so n = 180

- 120 or 120° Corresponding angles of similar polygons are congruent
- 10. 98° or 98 At 4:00, angle is 30(4)=120. Each minute, minute hand moves $\frac{360}{60} = 6^{\circ}$, and hour hand moves $\frac{30}{60} = 0.5^{\circ}$. Hands move closer at a rate of 6 – 0.5 = 5.5 deg/min. At 4:04, hands are 120 - 4(5.5) = 98 degrees apart

11.
$$\frac{4\pi\sqrt{5}}{3}$$
 $h^2 = 3^2 - 2^2$, so $h = \sqrt{5}$, $V = \frac{1}{3}\pi(2)^2(\sqrt{5}) = \frac{4\pi\sqrt{5}}{3}$

- 12. 3 T is given, so it is valid. Use it with $S \rightarrow : T$ to get the opposite of S by Modus Tollens (MT). Then use : $S \rightarrow R$ to get R by Modus Ponens (MP). Next, use : $Q \rightarrow : R$ to get Q by MT. Finally, use $Q \rightarrow : P$ to get the opposite of P by MP. So, T, R, and Q are valid.
- 13. 62 or 62° Either two angles are 62 or the vertex angle is 62. Angles are 62, 62, and 180 - 2(62) = 56 or angles are $62, \frac{180 - 62}{2}, \frac{180 - 62}{2}$, or 62, 59, and 59. Largest possible = 62
- 14. 144° or 144 Angle of regular pentagon = $\frac{180(5-2)}{5} = 108$. Bisected = 54. Quadrilateral formed with angles 108, 54, 54, and x. X = 360 - 108 - 54 - 54 = 144.
- 15. 32π Balloon can occupy $\frac{3}{8}$ of a sphere with radius 4,

or
$$\frac{3}{8}\left(\frac{4}{3}\pi 4^3\right) = 32\pi$$
.

- 16. 7/5 A is opposite side 3. sin A + cos A = 3/5 + 4/5 = 7/5.
- 17. 27000 $\sqrt{\frac{4}{9}} = \frac{2}{3}, \left(\frac{2}{3}\right)^3 = \frac{8}{27}, \frac{8}{27} = \frac{8000}{x}, x = 27000$
- 18. 200 $s = \frac{20}{\sqrt{2}}, A = s^2 = \left(\frac{20}{\sqrt{2}}\right)^2 = \frac{400}{2} = 200$

19. 30 or
$$30^{\circ}$$
 $\frac{360}{12} = 30$

20.
$$\frac{-1}{2}$$
 or -.5 Sides are 3, 5, 7. Use Law of Cosines to find cosine of largest
angle (opposite longest side). So,
 $7^2 = 3^2 + 5^2 - 2(3)(5) \cos C$; $49 = 9 + 25 - 30 \cos C$; $15 = -30 \cos C$;
 $\cos C = \frac{-1}{2}$

21.
$$4\pi$$
 $A = \frac{40}{360}\pi(6)^2 = \frac{1}{9}(36\pi) = 4\pi$

- 22. 47 or 47° Opposite angles of a parallelogram are congruent
- 23. -5 Midpt of AB = $\left(\frac{2+8}{2}, \frac{6-4}{2}\right) = (5,1)$ Slope of AB = $\frac{-4-6}{8-2} = \frac{-5}{3}$, so $m_{\perp} = \frac{3}{5}$

Substitute midpoint and m_{\perp} into y = mx + b, yielding $1 = \frac{3}{5}(5) + b$ So, b = -2, and equation of perpendicular bisector is $y = \frac{3}{5}x - 2$. Since (-5, y) is on the line, plug in to find y = $\frac{3}{5}(-5) - 2 = -5$.

24. incenter Orthocenter, centroid, and circumcenter ALWAYS on Euler line

25. 97.5 or
$$\frac{195}{2}$$
 First order vertices consecutively: (1, 5), (-7, 10), (-3, -8), (4, -3)

$$A = \frac{1}{2} \begin{vmatrix} 1 & -7 & -3 & 4 \\ 5 & 10 & -8 & -3 \end{vmatrix} = \frac{1}{2} [(10 + 56 + 9 + 20) - (-35 - 30 - 32 - 3)]$$

$$= \frac{1}{2} (95 + 100) = \frac{195}{2}$$