Practice Round

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

Practice Round

Practice. How many positive even integer solutions exist for the equation a + b + c + d = 100?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

Practice. How many positive even integer solutions exist for the equation a + b + c + d = 100?

Round 1

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

1. A hemispherical bowl of radius 5 units is filled with water to a height of 2 units. How much more volume is needed to completely fill the bowl?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

1. A hemispherical bowl of radius 5 units is filled with water to a height of 2 units. How much more volume is needed to completely fill the bowl?

Round 2

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

2. Let $f(x) = x^x$. Find the sum of all values of x for which f(x) = f'(x).

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

2. Let $f(x) = x^x$. Find the sum of all values of x for which f(x) = f'(x).

Round 3

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

3. If $f(x) = x^3 + ax^2 + bx + c$, find the product *abc* given that f(x) has critical points at x = -1 and x = 5, and that f(-1) = 9.

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

3. If $f(x) = x^3 + ax^2 + bx + c$, find the product *abc* given that f(x) has critical points at x = -1 and x = 5, and that f(-1) = 9.

Round 4

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

4. If f(x) is a differentiable and concave down quadratic polynomial on the interval [0,10], and if f(x) < 0 on [0,10] with a relative maximum at x = 2, put the letters representing these approximations in order from smallest to largest.

 $A - \int_0^{10} f(x) dx$

B – Left Hand Approximation of A using 10 rectangles of equal base length.

C – Right Hand Approximation of A using 10 rectangles of equal base length.

D – Midpoint Approximation of A using 10 rectangles of equal base length.

E – Trapezoid Approximation of A using 10 intervals of equal base length.

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

4. If f(x) is a differentiable and concave down quadratic polynomial on the interval [0,10], and if f(x) < 0 on [0,10] with a relative maximum at x = 2, put the letters representing these approximations in order from smallest to largest.

$A - \int_0^{10} f(x) dx$

B – Left Hand Approximation of *A* using 10 rectangles of equal base length.

C – Right Hand Approximation of A using 10 rectangles of equal base length.

D – Midpoint Approximation of A using 10 rectangles of equal base length.

E – Trapezoid Approximation of *A* using 10 intervals of equal base length.

Round 5

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

5. Let *A* be the volume of the solid formed by rotating y = 4 - x around the *x*-axis on the interval x = 0 to x = 2. Let *B* be the volume of the solid formed by the region bound by x = 2, y = 4 - x, and y = k, about the x-axis, where k > 4. For what exact value of *k* is A = B?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

5. Let *A* be the volume of the solid formed by rotating y = 4 - x around the *x*-axis on the interval x = 0 to x = 2. Let *B* be the volume of the solid formed by the region bound by x = 2, y = 4 - x, and y = k, about the x-axis, where k > 4. For what exact value of *k* is A = B?

Round 6

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

6. A sphere of radius $\pi/2$ has a volume charge density of $p(r) = \frac{\sin(r)}{r}$. What is the total charge (Q) enclosed in the sphere? (Hint: $dQ = p \cdot dV$)

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

6. A sphere of radius $\pi/2$ has a volume charge density of $p(r) = \frac{\sin(r)}{r}$. What is the total charge (Q) enclosed in the sphere? (Hint: $dQ = p \cdot dV$)

Round 7

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

7. An ellipse with a horizontal major axis of 6 and a vertical minor axis of 4 is revolved about its horizontal axis to form an ellipsoid. At time t = 0, a plane begins to pass through the ellipse perpendicular to its horizontal axis at a rate of 1 unit/sec. When t = 4 sec, at what rate is the cross-sectional area of the plane changing?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

7. An ellipse with a horizontal major axis of 6 and a vertical minor axis of 4 is revolved about its horizontal axis to form an ellipsoid. At time t = 0, a plane begins to pass through the ellipse perpendicular to its horizontal axis at a rate of 1 unit/sec. When t = 4 sec, at what rate is the cross-sectional area of the plane changing?

Round 8

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

8. Given $f(x) = x^3 - 2x - 4$ and $f^{-1}(x) = g(x)$ what is g'(0)?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

8. Given $f(x) = x^3 - 2x - 4$ and $f^{-1}(x) = g(x)$ what is g'(0)?

Round 9

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

9. Let

$$A = \int_{-\infty}^{\infty} e^{-x^2} dx$$

B = The area of a regular *n*-gon whose distance from the center to a vertex is 1 unit as $n \to \infty$.

What is A^{2B} (simplified)?

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

9. Let

$$A = \int_{-\infty}^{\infty} e^{-x^2} dx$$

B = The area of a regular *n*-gon whose distance from the center to a vertex is 1 unit as $n \to \infty$.

What is A^{2B} (simplified)?

Round 10

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

10. Evaluate:
$$\int_{-1}^{1} \frac{7x^{316}\sin(x^{325}) + 2x^{110} + x^{332}}{1 + x^{222}} dx$$

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

10. Evaluate:
$$\int_{-1}^{1} \frac{7x^{316}\sin(x^{325}) + 2x^{110} + x^{332}}{1 + x^{222}} dx$$

Extra Round

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

Extra Round

Extra. Evaluate: $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2}$

Mu Alpha Theta National Convention: 2007 Ciphering Test – Mu Division

Extra. Evaluate: $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2}$