2007 Mu Alpha Theta National Convention Calculus Matrices and Vectors Solutions

1.
$$
\mathbf{u} \cdot \mathbf{v} = 2 - 3 + 0 = -1
$$
. **A**
\n2. $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -5 \\ 1 & -1 & 0 \end{vmatrix} = -5\mathbf{i} - 5\mathbf{j} - 5\mathbf{k}$. **E**
\n3. $\mathbf{u} \cdot \mathbf{v} = 3 - \sqrt{3} + \sqrt{3} + 1 = 4$. $\|\mathbf{u}\| = \sqrt{3 + 1} = 2$. $\|\mathbf{v}\| = \sqrt{3 - 2\sqrt{3} + 1 + 3 + 2\sqrt{3} + 1} = 2\sqrt{2}$.
\n $\cos(\theta) = \frac{4}{2 \cdot 2\sqrt{2}} = \frac{\sqrt{2}}{2}$. $\theta = 45^{\circ}$. **C**
\n4. $2A - 3B = \begin{bmatrix} 3 & -10 \\ -11 & 8 \end{bmatrix}$. $\det(2A - 3B) = 24 - 110 = -86$. **E**
\n5. $\cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sin(t) + \cos(t)}{\sqrt{2}}$. $-\sin(\theta) d\theta = \frac{\cos(t) - \sin(t)}{\sqrt{2}} dt$. $\frac{d\theta}{dt} = \frac{\sin(t) - \cos(t)}{\sin(\theta) \cdot \sqrt{2}}$.
\n $\sin(\theta) = \frac{\|\mathbf{x} \times \mathbf{y}\|}{\|\mathbf{x}\| \|\mathbf{y}\|}$. $\mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ \sin(t) & \cos(t) & 0 \end{vmatrix} = (\cos(t) - \sin(t))\mathbf{k}$. $\sin(\theta) = \frac{|\cos(t) - \sin(t)|}{\sqrt{2}}$ so $\frac{d\theta}{dt} = \frac{\sin(t) - \cos(t)}{\cos(t) - \sin(t)}$ = 1 when $t = \frac{\pi}{3}$. **A**

6. I is true by definition and II follows from I. Since the eigenvalues are the roots of the characteristic polynomial, and since the characteristic polynomial of an $n \times n$ matrix is an *n*th order polynomial, there are *n* roots by the Fundamental Theorem of Algebra. Since λ is an eigenvalue of *A*, there is a vector **x** such that $A\mathbf{x} = \lambda \mathbf{x}$. Then $A^2\mathbf{x} = \lambda A\mathbf{x} = \lambda^2 \mathbf{x}$ and hence λ^2 is an eigenvlaue of A^2 , so IV is true. **D**

7. A matrix is singular when its determinant is equal to 0. 2 0 1 1 $|1 - 4x + 4 = 0$ 0 2 *x x x* -1 1 $| = 4x + 4 = 0$. $x = -1$. **A**

8.
$$
\langle t, \cos(kt) \rangle = \int_{-\pi}^{\pi} t \cos(kt) dt
$$
. Notice that $t \cos(kt)$ is an odd function, so the integral is 0 and

hence $a_k = 0$. **B**

9.
$$
\sin(\theta) = \frac{\|\mathbf{u} \times \mathbf{v}\|}{\|\mathbf{u}\| \|\mathbf{v}\|}
$$
 and $\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$, so $\frac{\|\mathbf{u} \times \mathbf{v}\|^2}{\|\mathbf{u}\|^2 \|\mathbf{v}\|^2} + \frac{(\mathbf{u} \cdot \mathbf{v})^2}{\|\mathbf{u}\|^2 \|\mathbf{v}\|^2} = 1$. Therefore
\n
$$
(\mathbf{u} \cdot \mathbf{v})^2 + \|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2
$$
. C

10. Adding a scalar multiple of one row to another row does not alter a matrix's determinant. Multiplying a row by a scalar multiple increases a matrix's determinant by a factor of the scalar. The determinant of the new matrix is therefore $12 \cdot 5 = 60$. **C**

*Calculus Matrices and Vectors Solutions 2007 MA*Θ *National Convention*

11.
$$
det(A) = \begin{vmatrix} 4x+1 & 5-2x \\ 2-2x & x-2 \end{vmatrix} = (4x+1)(x-2) - (5-2x)(2-2x) = 7x-12.
$$

\n
$$
A^{-1} = \begin{bmatrix} \frac{x-2}{7x-12} & \frac{2-5x}{7x-12} \\ \frac{2x-2}{7x-12} & \frac{4x+1}{7x-12} \end{bmatrix}. \quad \lim_{x \to \infty} A^{-1} = \begin{bmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{4}{7} \end{bmatrix}.
$$
 The largest entry is $\frac{4}{7}$. **C**

12. Notice that after *t* seconds the angle between \mathbf{v}_1 and \mathbf{v}_2 is $\frac{\pi}{4} + \frac{\pi}{32}$ $\frac{\pi}{4} + \frac{\pi}{22}t$. Geometrically, $\|\mathbf{v}_1 - \mathbf{v}_2\|$ is the distance between the heads of the two vectors. That is, it is the distance between the points $(1,0)$ and $\left(\cos\left(\frac{\pi}{4} + \frac{\pi}{32}t\right), \sin\left(\frac{\pi}{4} + \frac{\pi}{32}t\right)\right)$. Then

$$
\|\mathbf{v}_1 - \mathbf{v}_2\| = \sqrt{\left(1 - \cos\left(\frac{\pi}{4} + \frac{\pi}{32}t\right)\right)^2 + \sin^2\left(\frac{\pi}{4} + \frac{\pi}{32}t\right)} = \sqrt{2 - 2\cos\left(\frac{\pi}{4} + \frac{\pi}{32}t\right)}.
$$

$$
\frac{d\|\mathbf{v}_1 - \mathbf{v}_2\|}{dt} = \frac{2\sin\left(\frac{\pi}{4} + \frac{\pi}{32}t\right) \cdot \frac{\pi}{32}}{2\sqrt{2 - 2\cos\left(\frac{\pi}{4} + \frac{\pi}{32}t\right)}}.
$$
 When $t = 8$,
$$
\frac{d\|\mathbf{v}_1 - \mathbf{v}_2\|}{dt} = \frac{\pi\sqrt{2}}{64}.
$$

13. I is a 3×3 matrix. II is a 2×2 matrix. III is a 3×3 matrix. IV is a 2×2 matrix. **D**

14. The area of *R* is given by $(2 - x^2 - x^3)$ $\int_{0}^{1} (2-x^2)^3 dx = 2x^{-3^2} x^4$ 0 0 $\left[2-x^2-x^3\right]dx=2x-\frac{x^3}{2}-\frac{x^4}{4}\bigg|_{x=2}^{17}$ $\int (2 - x^2 - x^3) dx = 2x - \frac{x^3}{3} - \frac{x^4}{4} \bigg|_0^1 = \frac{17}{12}$. The transformation matrix is

5 -2 $T = \begin{bmatrix} 5 & -2 \\ 1 & 2 \end{bmatrix}$ and det $T = 12$. The area of R' is the area of R multiplied by the determinant of the transformation matrix. $\frac{17}{12} \cdot 12 = 17$. **C**

15. The first equation implies $x = 6 - z$. Plugging into the second equation gives $y + z = 6$. This combined with the first equation implies $x = y$ and the vector **v** will be of the form $\mathbf{v} = (t, t, 6 - t)$.

 $\|\mathbf{v}\| = \sqrt{3t^2 - 12t + 36}$. We can minimize $3t^2 - 12t + 36$ for simplicity. $6t - 12 = 0$ so $t = 2$ and hence $\|\mathbf{v}\| = \sqrt{4+4+16} = 2\sqrt{6}$. **B**

16. Notice that
$$
y = x^4 + 3
$$
 and $x \in \left[1, \sqrt{2}\right]$.
$$
\int_{1}^{\sqrt{2}} \left(x^4 + 3\right) dx = \left[\frac{x^5}{5} + 3x\right]_{1}^{\sqrt{2}} = \frac{19\sqrt{2} - 16}{5}.
$$

17. We want to find a vector (x, y, z) such that $x + z = 0$ and $-x+2y+z=0$. Choose $x=1$. Then $z = -1$ and $y = 1$. (1,1, -1) is normal to both vectors. **D**

18.
$$
|A_n| = \sqrt{n^2 + 2n} - \sqrt{n^2 + 2n + 1} = \frac{-1}{\sqrt{n^2 + 2n} + \sqrt{n^2 + 2n + 1}}
$$
. $\lim_{n \to \infty} |A_n| = 0$. A

19. The area of the triangle is the absolute value of $\frac{1}{2} |4t - t^2 t| = |4t - \frac{3}{5}t^2$ 0 01 $\frac{1}{2} \begin{vmatrix} 4t - t^2 & t & 1 \end{vmatrix} = \begin{vmatrix} 4t - \frac{5}{4} \end{vmatrix}$ $2 \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 \\ 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$ $|t-t^2 \t t \t 1| = |4t - t^2 t$ *t* $-t^2$ t $1 = 4t - \frac{3}{2}t^2$. Since this does not

change signs when $t \in [0,3]$, we need only maximize $4t - \frac{5}{4}t^2$ 4 $t - \frac{5}{4}t^2$. $4 - \frac{5}{2}t = 0$ so $t = \frac{8}{5}$ 5 $t = \frac{0}{5}$. The area is

then $4 \cdot \frac{8}{5} - \frac{5}{1} \left(\frac{8}{5}\right)^2 = \frac{16}{5} = 3.2$ $\frac{8}{5} - \frac{5}{4} \left(\frac{8}{5} \right)^2 = \frac{16}{5} = 3.2$. Checking the end points, the area would be 0 and .75, so the maximum is 3.2. **C**

20. Notice that, in general, the $b_{i,j}$ element of $B^T B$ is the dot product of the *i*th column of *B* and the *j*th column of *B*. Since $A^T A = I$, it follows that the magnitude of each column is 1 and that the columns are all orthogonal. Therefore I and II are both true. A counterexample for III is the matrix 1 0 0 1 $\begin{bmatrix} -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$ whose determinant is -1 . A counterexample for IV is 0 1 1 0 $\begin{vmatrix} 0 & 1 \end{vmatrix}$ $\begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$. **B** 21. 1 05 0 4 $1 = 1.5 - 0 + 5.8 = 45$ 232 $= 1.5 - 0 + 5.8 =$ − . **C** 22. $f'(x) = (2 - \sqrt{3})e^{(2 - \sqrt{3})x}$. $f'(0) = 2 - \sqrt{3}$. Two points of the tangent line are the origin and $(1, 2 - \sqrt{3})$. If we rotate these two points 30°, they will determine the rotated line. The rotation matrix is $\begin{bmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \cos(30^\circ) & \cos(30^\circ) \end{bmatrix}$ $(30^{\circ}) \quad \cos(30^{\circ})$ $\cos(30^\circ)$ $-\sin(30^\circ)$ $\begin{bmatrix} \sqrt{3} & -\frac{1}{2} \end{bmatrix}$ $\sin(30^\circ) \cos(30^\circ)$ | $\frac{1}{2}$ $\sqrt{3}$ $\begin{bmatrix} \cos(30^{\circ}) & -\sin(30^{\circ}) \\ \sin(30^{\circ}) & \cos(30^{\circ}) \end{bmatrix} = \begin{bmatrix} \sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} \end{bmatrix}$. The origin will clearly be mapped to itself. $\frac{3}{2}$ - $\frac{1}{2}$ | 1] $\sqrt{3}$ -1 $\frac{1}{2}$ $\sqrt{3}$ $\left[\frac{2-\sqrt{3}}{3}\right]$ $\left[\sqrt{3}-1\right]$ 2 $\frac{2}{2}$ $\begin{bmatrix} \sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \sqrt{3} \\ \frac{1}{2} & \sqrt{3} \end{bmatrix} \begin{bmatrix} 1 \\ 2 - \sqrt{3} \end{bmatrix} = \begin{bmatrix} \sqrt{3} - 1 \\ \sqrt{3} - 1 \end{bmatrix}$. The slope of the rotated line is 1. **B** 23. From the last equation, $5x-2 = y+z$ so $x+y+z=6x-2$. Using Cramer's Rule,

$$
x = \frac{\begin{vmatrix} -1 & 3 & 1 \\ 13 & 2 & 3 \\ 2 & -1 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 5 & -1 & -1 \end{vmatrix}} = \frac{-1 \cdot 1 - 3 \cdot -19 + 1 \cdot -17}{2 \cdot 1 - 3 \cdot -16 + 1 \cdot -11} = \frac{39}{39} = 1. \quad x + y + z = 4. \quad \mathbf{C}
$$

24. The speed is given by $\|\mathbf{r}'(0)\|$. $\mathbf{r}'(t) = (6t+2)\mathbf{i} + (\cos(t) - t\sin(t))\mathbf{j} + e^t\mathbf{k}$. $\mathbf{r}'(0) = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\|\mathbf{r}'(0)\| = \sqrt{6}$. **D**

*Calculus Matrices and Vectors Solutions 2007 MA*Θ *National Convention*

25. Since det
$$
A = \frac{1}{6}
$$
, $\lim_{n \to \infty} \sum_{i=1}^{n} \det(A^{i}) = \lim_{n \to \infty} \sum_{i=1}^{n} (\det A)^{i} = \sum_{i=1}^{\infty} \left(\frac{1}{6}\right)^{i} = \frac{\frac{1}{6}}{1 - \frac{1}{5}} = \frac{1}{5}$. B

26. *M* is row equivalent to the identity matrix, hence the rank of *A* is 4. **E**

27. It is easy to see that 1 0 1 $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. Using a Maclaurin expansion,

$$
\cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \frac{A^6}{6!} + L = \begin{bmatrix} 1 - \frac{1}{2!} + \frac{1}{4!} - L & 0 - \frac{2}{2!} + \frac{4}{4!} - L \\ 0 & 1 - \frac{1}{2!} + \frac{1}{4!} - L \end{bmatrix} = \begin{bmatrix} \cos(1) & -\sin(1) \\ 0 & \cos(1) \end{bmatrix}.
$$

28.
$$
\begin{vmatrix} 2-3a & 3a+1 \\ a-2 & 1-a \end{vmatrix} = (2-3a)(1-a) - (3a+1)(a-2) = 3a^2 - 5a + 2 - (3a^2 - 5a - 2) = 4
$$
. **B**

29.
$$
(-1,3) \oplus (5,0) = ||(4,3)|| - [-5+0] = 5+5=10.
$$
 D

30.
$$
\frac{2 \cdot 1 - 1 \cdot 2 + 2 \cdot 6 + 3}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{15}{3} = 5. \text{ C}
$$