Question #1 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the points on the graph of $y = \frac{1}{x}$ where the graph is parallel to the line 4x + 9y = 3. Then sum all the x-coordinates of these points together with all the y-coordinates of these points to get your answer.

Question #1 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the points on the graph of $y = \frac{1}{x}$ where the graph is parallel to the line 4x + 9y = 3. Then sum all the x-coordinates of these points together with all the y-coordinates of these points to get your answer.

Question #2 Mu School Bowl 2007 Mu Alpha Theta National Convention

A coin is dropped from a height of 750 feet. The height, s (in feet), at time, t (in seconds), is given by: $s = -16t^2 + 750$. Let A = the average velocity on the interval [1, 3].

Let B = the instantaneous velocity when t = 3.

Find A + B

Question #2 Mu School Bowl 2007 Mu Alpha Theta National Convention

A coin is dropped from a height of 750 feet. The height, s (in feet), at time, t (in seconds), is given by: $s = -16t^2 + 750$.

Let A = the average velocity on the interval [1, 3].

Let B = the instantaneous velocity when t = 3.

Question #3 Mu School Bowl 2007 Mu Alpha Theta National Convention

Part A: As a balloon in the shape of a sphere is being blown up, the volume is increasing at the rate of 4 cu. in./second. At what rate (in inches/sec) is the radius increasing when the radius is 1 inch?

Part B: The radius of a circle is increasing at the rate of 5 in/min. At what rate is the area increasing (in inches²/sec) when the radius is 10 inches?

Find the sum of the answers to parts A and B.

Question #3 Mu School Bowl 2007 Mu Alpha Theta National Convention

Part A: As a balloon in the shape of a sphere is being blown up, the volume is increasing at the rate of 4 cu. in./second. At what rate (in inches/sec) is the radius increasing when the radius is 1 inch?

Part B: The radius of a circle is increasing at the rate of 5 in/min. At what rate is the area increasing (in inches²/sec) when the radius is 10 inches?

Find the sum of the answers to parts A and B.

Question #4 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the value of the area of the region bounded by $x = y^2 - 2$ and the line y = x. Let B = the value of the volume of the solid formed using the following information. The base of the solid is the circle $x^2 + y^2 = 9$ and each cross-section of the solid perpendicular to the x-axis is a square.

Find A + B

Question #4 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the value of the area of the region bounded by $x = y^2 - 2$ and the line y = x. Let B = the value of the volume of the solid formed using the following information. The base of the solid is the circle $x^2 + y^2 = 9$ and each cross-section of the solid perpendicular to the x-axis is a square.

Question #5 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let f be a differentiable function such that f'' is continuous and f and f' have the values shown in the table below and use the information in the table to answer the problems. x 0 1 2 3 4 5

x	0	1	2	3	4	5
f(x)	1	17	3	8	9	11
f'(x)	25	21	19	15	13	-2

Let A = the approximate value of f''(x) at x = 2. (using x =1 and x = 3). Let B = the value of $\int_0^2 x f'(x^2) dx$ Let C = the value of $\int_1^3 x f''(x) dx$ Find A + B + C

Question #5 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let f be a differentiable function such that f'' is continuous and f and f' have the values shown in the table below and use the information in the table to answer the problems. x 0 1 2 3 4 5

x	0	1	2	3	4	5
f(x)	1	17	3	8	9	11
f'(x)	25	21	19	15	13	-2

Let A = the approximate value of f''(x) at x = 2. (using x =1 and x = 3). Let B = the value of $\int_0^2 x f'(x^2) dx$ Let C = the value of $\int_1^3 x f''(x) dx$ Find A + B + C

Question #6 Mu School Bowl 2007 Mu Alpha Theta National Convention

A particle moves in the xy-plane so that the position of the particle at any time *t* is given by $x(t) = 2e^{3t} + e^{-7t}$ and $y(t) = 3e^{3t} - e^{-2t}$.

Let A = the speed of the particle at time t = 0. Let B = $\lim_{t \to \infty} \frac{dy}{dx}$.

Find A + B

Question #6 Mu School Bowl 2007 Mu Alpha Theta National Convention

A particle moves in the xy-plane so that the position of the particle at any time *t* is given by $x(t) = 2e^{3t} + e^{-7t}$ and $y(t) = 3e^{3t} - e^{-2t}$.

Let A = the speed of the particle at time t = 0. Let B = $\lim_{t \to \infty} \frac{dy}{dx}$.

Question #7 Mu School Bowl

2007 Mu Alpha Theta National Convention

Let *f* be a continuous function with the following properties. The domain of *f* is $-10 \le x \le 10$. The range of *f* is 0 < f(x) < 1. Assuming the function behaves according to the values listed, use the table below to answer the following problems.

x	-10	-3	-2	-1	0	1	2	3	10
f'(x)	.000045	.045	.105	.197	.25	.197	.105	.045	.000045

Let A = the sum of all the x-coordinates of all relative and absolute maximums of f.

Let B = the sum of all the x-coordinates of all relative and absolute minimums of f.

Let C = the sum of all x-coordinates of all points of inflection of f (to the nearest whole number).

Find A + B + C

Question #7 Mu School Bowl

2007 Mu Alpha Theta National Convention

Let *f* be a continuous function with the following properties. The domain of *f* is $-10 \le x \le 10$. The range of *f* is 0 < f(x) < 1. Assuming the function behaves according to the values listed, use the table below to answer the following problems.

x	-10	-3	-2	-1	0	1	2	3	10
f'(x)	.000045	.045	.105	.197	.25	.197	.105	.045	.000045

Let A = the sum of all the x-coordinates of all relative and absolute maximums of f.

Let B = the sum of all the x-coordinates of all relative and absolute minimums of f.

Let C = the sum of all x-coordinates of all points of inflection of f (to the nearest whole number).

 $Find \; A + B + C$

Question #8 Mu School Bowl 2007 Mu Alpha Theta National Convention

A cubic polynomial is defined by $f(x) = 4x^3 + ax^2 + bx + k$, where a, b & k are constants. The function has a local maximum at x = -1 and the graph of the function has a point of inflection at x = -2. Also, $\int_{0}^{1} f(x) dx = 32$.

Find a + b + k

Question #8 Mu School Bowl 2007 Mu Alpha Theta National Convention

A cubic polynomial is defined by $f(x) = 4x^3 + ax^2 + bx + k$, where a, b & k are constants. The function has a local maximum at x = -1 and the graph of the function has a point of inflection at x = -2. Also, $\int_0^1 f(x) dx = 32$.

Find a + b + k

Question #9 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the area of the region in the 1st quadrant bounded by $y = x^2 + 1$ and y = 5. Let B = the area of the region between the graph of $y = 3x^2 + 2x$ and the *x*-axis from x = 1 to x = 3. Let C = the area of the region between the graph of $y = sin\left(\frac{x}{2}\right)$ and the *x*-axis from x = 0 to $x = 2\pi$.

 $Find \; A + B + C$

Question #9 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the area of the region in the 1st quadrant bounded by $y = x^2 + 1$ and y = 5. Let B = the area of the region between the graph of $y = 3x^2 + 2x$ and the *x*-axis from x = 1 to x = 3. Let C = the area of the region between the graph of $y = sin\left(\frac{x}{2}\right)$ and the *x*-axis from x = 0 to $x = 2\pi$.

Find A + B + C

Question #10 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the value of
$$\frac{d}{dx}\int_{2}^{e^{x}}\ln(t)dt$$
 Let B = the value of $\frac{d}{dx}\int_{e}^{x^{3}}e^{t}dt$
Let C = the value of $\frac{d}{dx}\int_{x}^{3}e^{\sin t}dt$

Question #10 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the value of $\frac{d}{dx}\int_{2}^{e^{x}}\ln(t)dt$ Let B = the value of $\frac{d}{dx}\int_{e}^{x^{3}}e^{t}dt$ Let C = the value of $\frac{d}{dx}\int_{x}^{3}e^{\sin t}dt$

Find A + B + C

Find A + B + C

Question #11 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let R be the region bounded by the graph of $f(x) = x^2$ and $g(x) = 4x - x^2$. Let A = the volume of the solid obtained by rotating R about the x-axis. Let B = the volume of the solid obtained by rotating R about the line x = 3.

Find A + B

Question #11 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let R be the region bounded by the graph of $f(x) = x^2$ and $g(x) = 4x - x^2$. Let A = the volume of the solid obtained by rotating R about the x-axis. Let B = the volume of the solid obtained by rotating R about the line x = 3.

Question #12 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the average value of $f(x) = \sqrt{x}$ on the interval [4, 9]. Let B = the average value of $f(x) = x\sqrt{25 - x^2}$ on the interval [0, 5].

Find A + B

Question #12 Mu School Bowl 2007 Mu Alpha Theta National Convention

Let A = the average value of $f(x) = \sqrt{x}$ on the interval [4, 9]. Let B = the average value of $f(x) = x\sqrt{25 - x^2}$ on the interval [0, 5].

Question #13 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the length of one arch of the cycloid $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$

Question #13 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the length of one arch of the cycloid $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$

Question #14 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the area (in terms of π) enclosed by the polar graph $r = \cos 2\theta$.

Question #14 Mu School Bowl 2007 Mu Alpha Theta National Convention

Find the area (in terms of π) enclosed by the polar graph $r = \cos 2\theta$.