2007 Mu Alpha Theta National Convention Mu Sequences and Series-SOLUTIONS

C 1.)
$$
f(x) = \log e
$$
. 1 + $\log e$ + $(\log e)^2$ + ... = $\frac{1}{1-\log e}$.

A 2.)
$$
f(x) = \ln 10
$$
. $\ln 10 + 0 + 0 + 0 + \dots = \ln 10$.

D 3.) $1+\frac{i}{2}-\frac{1}{4}-\frac{i}{8}+\frac{1}{16}+...=(1-\frac{1}{4}+\frac{1}{16}-...) + i(\frac{1}{2}-\frac{1}{8}+...)$. Since these are both geometric: $\frac{1}{1+\frac{1}{4}}+\frac{\frac{1}{2}}{1+\frac{1}{4}}i=\frac{4}{5}+\frac{2}{5}$ $rac{2}{5}$ *i*.

B 4.) $f(0) = 1$. $f'(x) = e^x \sin x + e^x \cos x$, $f'(0) = 1$. $f''(x) = 2e^x \cos x$, $f''(0) = 2$. $f'''(x) = 2e^x \cos x$ $2e^x \sin x, f'''(0) = 2.$ So $f(x) = 1 + x + x^2 + \frac{x^3}{3} + \dots$ So the coefficient of the third order term is $\frac{1}{3}$.

E 5.) Since this is a geometric sum with ratio $(-\ln x)$, the sum, and thus the derivative, do not exist at $x = e + 1$.

B 6.)
$$
f(x) = \cos x, g(x) = \sin x.
$$
 $(f(x) + g(x))^2 - g(2x) = ((\sin x)^2 + (\cos x)^2 + 2\sin x \cos x - \sin 2x) = 1.$

C 7.) A regular polygon with n sides can be broken down into n triangles, each sharing one side with the polygon and having a vertex at its center. Thus, the center angle of each triangle is $\frac{2\pi}{n}$. The height of each triangle, x, can be found, since $\frac{x}{1} = \cot \frac{\pi}{n}$. Thus, the area of each of the *n* triangles is $\cot \frac{\pi}{n}$, so the area of the polygon is *n* cot $\frac{\pi}{n}$.

C 8.)
$$
\sum_{n=1}^{k} \frac{n(n+1)}{2} = \frac{k(k+1)(2k+1)}{12} + \frac{n(n+1)}{4} \cdot \frac{100 \cdot 101 \cdot 201}{12} + \frac{100 \cdot 101}{4} = 25 \cdot 101 \cdot (67 + 1) = 171700.
$$

A 9.) It is possible for $f(x)$ to never converge. If the convergence intervals for $g(x)$ and $h(x)$ do not coincide, then it is possible that $\frac{g(x)}{k(x)}$ diverges on the interval where $h(x)$ converges and $\frac{h(x)}{k(x)}$ diverges on the interval where $q(x)$ converges.

E 10.) It is also possible for $f(x)$ to always converge. If the convergence interval of $k(x)$ is contained entirely within the convergence intervals of both $f(x)$ and $g(x)$, then it is possible that $\frac{g(x)h(x)}{k(x)}$ converges at all other values of x as well.

C 11.) $\frac{g(x)}{k(x)}$ will necessarily converge on the interval where $g(x)$ converges, but it can diverge at all other points.

B 12.) This sum will have 3000 terms, 300 each of the numbers 1-10. Thus, $55 \cdot 300 = 16500$.

A 13.) $x^2 = f(g(x \cdot x^2))$. Since $f(g(y)) = y$, $x^2 = x^3$. The solutions are $x = 0$ and $x = 1$, the product is 0.

D 14.)
$$
\frac{\left(\frac{n(n+1)}{2}\right)^2}{\frac{n(n+1)}{2} \cdot \frac{n(n+1)(2n+1)}{6}} = \frac{3}{2n+1}.
$$

E 15.) This series is geometric with ratio $\frac{2x+1}{3}$. $-3 < 2x+1 < 3$. $x > -2$ and $x < 1$. The series doesn't converge at either endpoint, so $(-2, 1)$.

A 16.) Let g equal Gaku's area. $200 = 100 + 10\sqrt{g} + g$. If $u = \sqrt{g}$, $0 = -100 + 10u + u^2$. Since $u > 0$, A 10.) Let g equal Gaku's area. $200 - 100 + 10\sqrt{g} + g$. If $u = \sqrt{g}$, $0 = -100$
 $u = 5\sqrt{5} - 5$. Thus, the difference between Aneesh's and Chen's areas is $150 - 50\sqrt{5}$.

B 17.)
$$
f(x) = 6 + 4x + \frac{1}{1+2x}
$$
. This series will converge if $-\frac{1}{2} < x < \frac{1}{2}$. Thus, $f'(x) = 4 - \frac{2}{(1+2x)^2}$. $9 \cdot f'(\frac{1}{4}) = 28$.

A 18.) If either $a < 0$ or $b < 0$, then there are points where the series will not exist, thus A is a necessary (but not sufficient) condition. B, C, and D are not necessary because we can allow one of c or d to be zero while keeping the other positive. $c \geq 0$ and $d \geq 0$ would also be necessary.

A 19.) $f(1) = 0$. $f'(x) = \frac{e^x}{x} + e^x \ln x - e$. $f'(1) = 0$. $f''(x) = \frac{xe^x - e^x}{x^2} + \frac{e^x}{x} + e^x \ln x$. $f''(1) = e$. $f'''(x) = e$. $\frac{x^2e^x-2xe^x+2e^x}{x^3}+\frac{xe^x-e^x}{x^2}+ \frac{e^x}{x}+e^x\ln x.$ $f'''(1)=2e$. Since this is the term for the third derivative, the coefficient is $\frac{2e}{3!}=\frac{e}{3}$ $\frac{e}{3}$.

C 20.) Writing out the first few partial sums, approximating: $1 - \frac{1}{8} = 1 - .125 = .875$. $1 - \frac{1}{8} + \frac{1}{27} = 1 - .125 + .037 =$.912. Since the series is alternating and at this point is fluctuating by less than 0.05, the sum will round to 0.9.

B 21.) By partial fractions,
$$
k\left(\sum_{n=2}^{k}\left(\frac{2}{n^2-1}\right)-\frac{3}{2}\right)=k\left(1+\frac{1}{2}-\frac{3}{2}-\frac{1}{k}-\frac{1}{k+1}\right)=-\frac{k(2k+1)}{k(k+1)}
$$
. Thus, $\lim_{k\to\infty} a_k=-2$.

C 22.) As a_n converges to its limit, $a_n =$ $\overline{12 - a_n}$, $a_n^2 + a_n - 12 = 0$. $(a_n - 3)(a_n + 4) = 0$. Since $a_n \ge 0$, a_n converges to 3.

D 23.) Since the Taylor series for $g(x)$ converges for all real x, $f'(\frac{\pi}{4})$ $(\frac{\pi}{4}) = g'(\frac{\pi}{4})$ $\frac{\pi}{4}$) = $\sqrt{2}$. Thus, $2 \cdot f'(\frac{\pi}{4})$ $\frac{\pi}{4}$) = $2\sqrt{2}$.

E 24.) Since the Taylor series would be about $x = \frac{\pi}{2}$ $\frac{\pi}{2}$, the terms must have an $(x - \frac{\pi}{2})$ $(\frac{\pi}{2})^n$ factor, not an x^n factor.

C 25.) $a_1 = 0$. Making the substitution $u = \tan x$, $a_2 = 1$. Since every second term in the sum will be a one, and both the first and last terms are ones, the sum equals $\frac{k+1}{2}$.

A 26.)
$$
a_n = \left(\frac{n^n(\sin n)^2}{(1+n)^n}\right)^n = \left(\frac{(\sin n)^2}{(1+\frac{1}{n})^n}\right)^n = \left(\frac{(\sin n)^2}{e}\right)^n = k^n
$$
, where $0 \le k < 1$. Thus, a_n approaches 0.

B 27.) $f(x) = \frac{1}{1-x}$. $\int_{0}^{\frac{1}{2}}$ 0 1 $\frac{1}{1-x}dx = \ln 2$. This is closest to $\frac{1}{2}$. E 28.) $\sum_{n=1}^{\infty}$ $n=1$ $2^n(-1)^n$ $\frac{(-1)^n}{n!} = \left(\sum_{n=0}^{\infty}\right)$ $n=0$ $(-2)^n$ $\frac{(-2)}{n!} - 1$ = $e^{-2} - 1$. D 29.) $g(x) = 1 + 2 + 4 + ... + 2^x = (2^{x+1} - 1)$. Thus, $g'(6) = 2^7 \ln 2 = 128 \ln 2$.

B 30.) Converting the numbers to base ten, the sequence is 8, 15, 22, 29, 36, So, the next number in base ten is 43, which is 47 in base nine.