1. $\sqrt{(18-1)^2} = 17$ B 2. 4y = -3x + 5, m = -3/4 = A, and the y-intercept is (0, 5/4). $5/4 - \frac{3}{4} = \frac{1}{2}$ A 3. $m = \frac{81 - 221}{400 - 260} = \frac{-140}{140} = -1$. y = -x + b, 221 = -260 + b, b = 481. x + y = 481 C 4. X-intercept is (0, -C/B), y-intercept is (-C/A, 0). Distance = $\sqrt{\frac{C^2}{A^2} + \frac{C^2}{B^2}} = \sqrt{\frac{C^2 B^2 + C^2 A^2}{A^2 B^2}} = C\sqrt{\frac{A^2 + B^2}{A^2 B^2}} \qquad A$ 5. The midpoint of AB is (-2, 7). The slope of AB is -6/6 = -1, so the slope of the line we want is 1. y - 7 = -7x + 2. D 6. Since the line is slope of 1, the arctangent of 1 is 45 degrees. B 7. The midpoint is (-2, 7), so take the midpoint of (-2, 7) and (1, 4), which is (-1/2, 11/2)C8. $x^2 + 6x + 9 = 4y - 13 + 9 \implies (x+3)^2 = 4y - 4$, so we have $y = \frac{1}{4}(x+3)^2 + 1$, of which the vertex is (-3, 1). $a = \frac{1}{4}$, so p = 1, so the focus is (-3, 2). D 9. $x^2 - 6x + 9 + y^2 + 12y + 36 = -29 + 9 + 36$, so $(x - 3)^2 + (y + 6)^2 = 16$, radius = 4 A 10. The vertex is (-3, 1), and p = 1, so the directrix is the x-axis. B 11. We make a right triangle with side lengths distance between the vertex and the center, distance of the tangent, and connecting those points through the radius. We have a right triangle with hypotenuse length $\sqrt{85}$. and leg length 4 (the radius). So 85 - 16 = 69, so we take the square root of 69 for the answer, C. 12. $x^{2} + 18x + 81 + y^{2} - 18y + 81 = -162 + 81 + 81$ $(x+9)^{2} + (y-9)^{2} = 0$ The graph is the point (-9, 9) C 13. Three triangles, on the W shaped graph. We have $\frac{1}{2}(2)(2) + \frac{1}{2}(18)(9) + \frac{1}{2}(3)(3) = \frac{175}{2}$ A 14. *C* 15. $\begin{vmatrix} 3 & 7 & 5 \\ 4 & 3 & -2 \end{vmatrix} = -14i + 20j + 9k - (28k + 15i - 6j) = -29i + 26j - 19k C$ 16. D 17. $\begin{vmatrix} i & j & k \\ -29 & 26 & -19 \\ 1 & 0 & 1 \end{vmatrix} = 26i - 19j - (26k - 29j) = 26i + 10j - 26k B$

18. It's the same as the Cartesian distance between the points $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and (-1, 0). So we have

$$\sqrt{\left(\frac{1}{\sqrt{2}}+1\right)^2 + \frac{1}{2}} = \sqrt{\frac{1}{2}+1 + \sqrt{2} + \frac{1}{2}} = \sqrt{2 + \sqrt{2}} A$$

19. We find the area of the sector of the circle, minus the triangle and double that result. The area of the quarter circle is $\frac{1}{4}\pi\left(\frac{a}{2}\right)^2 = \frac{a^2\pi}{16}$. The triangle is a right triangle with legs of length a/2 and a/2. So the area of the triangle is $\frac{1}{2}\left(\frac{a}{2}\right)\left(\frac{a}{2}\right) = \frac{a^2}{8}$. So we subtract and double, for $2\left(\frac{a^2\pi}{16} - \frac{a^2}{8}\right) = \frac{a^2\pi}{8} - \frac{a^2}{4} = \frac{a^2}{8}(\pi - 2)$ D 20. We want the center of the hyperbola: $13(x^2 + 2x + 1) - 7(y^2 - 2y + 1) = 85 + 13 - 7$ $13(x + 1)^2 - 7(y - 1)^2 = 91$ A 21. We want twice the distance between (x, y) and (4, 5) to be the distance between (x, y) and (-1, 1). $2\sqrt{(x - 4)^2 + (y - 5)^2} = \sqrt{(x + 1)^2 + (y - 1)^2}$ $4\left[x^2 - 8x + 16 + y^2 - 10y + 25\right] = x^2 + 2x + 1 + y^2 - 2y + 1$ $4x^2 + 4y^2 - 32x - 40y + 64 + 100 = x^2 + y^2 + 2x - 2y + 2$ $3x^2 + 3y^2 - 34x - 38y + 162 = 0$ C

22. We subtract the area of the circle from the area of the square. The side lengths of the square are $4\sqrt{2}$, so the area of the square is 32. The radius of the circle is half the side length of the square, or $2\sqrt{2}$. Thus the area of the circle is 8π . A

23. $\pi r^2 + \frac{\sqrt{3}}{4}s^2 = \pi + \sqrt{3}$. Since r and s are integers, r must be equal to 1 and s must be equal to 2. Thus the total perimeter is $2\pi r + 3s = 2\pi + 6$ B

24. $-1+1+1=\sqrt{3}\sqrt{3}\cos\theta \implies \cos\theta = \frac{1}{3}$, the cosecant is $\frac{3}{\sqrt{8}} = C$

25. The eccentricity of the polar graph is the number next to the sine, so it is 1, and the conic with eccentricity 1 is a parabola. C

26. Outside the trapezoid we are going to sweep a sector of a circle with 180 + 30 = 210 degrees. So our area is $\frac{1}{2}r^2\theta = \frac{1}{2}(4)\left(\frac{7\pi}{6}\right) = \frac{7\pi}{3}$ A

27. A

28. Since a > b, it has a horizontal major axis, so the foci are on the horizontal axis, so "c" gets added and subtracted from the x-coordinate. And $c = \sqrt{a^2 - b^2}$ A

<i>L</i> J.			
	-1	8	
24	3	10	-10
50	5	4	12
4	1	1	5
-4	-4	3	3
-3	-1	8	-32

Adding up the columns and subtracting, we have 71 + 22, and dividing by 2 we have 46.5 C. 30. The centroid is the center of the ellipse. We have

$$\frac{16(x^{2}+2x+1)+4(y^{2}+2y+1)=64}{(x+1)^{2}} + \frac{(y+1)^{2}}{16} = 1$$

So the centroid is (-1, -1). So we need to find the distance between (-1, -1) and the line 5x + 5y = 98. $\frac{\left|-5-5-98\right|}{5} = \frac{108}{5}$

$$\frac{1}{5\sqrt{2}} = \frac{1}{5\sqrt{2}}$$

So, we have $2\pi Ad = 2\pi (8\pi) \left(\frac{108}{5\sqrt{2}}\right) = \frac{864\pi^2 \sqrt{2}}{5} A$

ANSWER KEY

1. B 2. A 3. C 4. A 5. D 6. B 7. C 23. D 8. D 24. C 9. A 25. C 10. B 26. B 11. C 27. A 12. C 28. A 13. A 29. C 14. A 30. A 15. C 16. C 17. B 18. A 19. D 20. A 21. C 22. A