Question #0 Theta Ciphering MA0National Convention 2007

Evaluate:
$$\sum_{i=1}^{9999} \log\left(\frac{i}{i+1}\right)$$

Question #0 Theta Ciphering MA0National Convention 2007

Evaluate:
$$\sum_{i=1}^{9999} \log\left(\frac{i}{i+1}\right)$$

Question #0 Theta Ciphering MA0National Convention 2007

Evaluate: $\sum_{i=1}^{9999} \log\left(\frac{i}{i+1}\right)$

Question #0 Theta Ciphering MA0National Convention 2007

Evaluate:
$$\sum_{i=1}^{9999} \log\left(\frac{i}{i+1}\right)$$

Question #1 Theta Ciphering MAONational Convention 2007

The function $f(x) = x^3 + 15x^2 + 39x - 55$ has roots r, s, and t, and r > s > t. Find the value of 3r + s - 5t. Question #1 Theta Ciphering MA0National Convention 2007

The function $f(x) = x^3 + 15x^2 + 39x - 55$ has roots r, s, and t, and r > s > t. Find the value of 3r + s - 5t.

Question #1 Theta Ciphering MAONational Convention 2007

The function $f(x) = x^3 + 15x^2 + 39x - 55$ has roots r, s, and t, and r > s > t. Find the value of 3r + s - 5t. Question #1 Theta Ciphering MA0National Convention 2007

The function $f(x) = x^3 + 15x^2 + 39x - 55$ has roots r, s, and t, and r > s > t. Find the value of 3r + s - 5t. Question #2 Theta Ciphering MA0National Convention 2007

Given that $5x \log(5x \log(5x \log(...))) = 100$, solve for *x*.

Question #2 Theta Ciphering MA0National Convention 2007

Given that $5x \log(5x \log(5x \log(...))) = 100$, solve for *x*.

Question #2 Theta Ciphering MAO National Convention 2007

Given that $5x \log(5x \log(5x \log(...))) = 100$, solve for *x*. Question #2 Theta Ciphering MA0National Convention 2007

Given that $5x \log(5x \log(5x \log(...))) = 100$, solve for *x*. Question #3 Theta Ciphering MA0National Convention 2007

Given that $i = \sqrt{-1}, \frac{31-5i}{2-5i} = a+bi$, and that *a* and *b* are elements of the set of real numbers, what is the value of $\frac{a!}{b!}$? Question #3 Theta Ciphering MA0National Convention 2007

Given that $i = \sqrt{-1}, \frac{31-5i}{2-5i} = a+bi$, and that *a* and *b* are elements of the set of real numbers, what is the value of $\frac{a!}{b!}$?

Question #3 Theta Ciphering MA0National Convention 2007

Given that $i = \sqrt{-1}, \frac{31-5i}{2-5i} = a+bi$, and that *a* and *b* are elements of the set of real numbers, what is the value of $\frac{a!}{b!}$? Question #3 Theta Ciphering MA0National Convention 2007

Given that $i = \sqrt{-1}, \frac{31-5i}{2-5i} = a+bi$, and that *a* and *b* are elements of the set of real numbers, what is the value of $\frac{a!}{b!}$? Question #4 Theta Ciphering MA0National Convention 2007

What is the area of an equiangular octagon with side lengths that alternate between 4 and 6 as shown in the diagram?

Question #4 Theta Ciphering MAONational Convention 2007

What is the area of an equiangular octagon with side lengths that alternate between 4 and 6 as shown in the diagram?

Question #4 Theta Ciphering MAONational Convention 2007

What is the area of an equiangular octagon with side lengths that alternate between 4 and 6 as shown in the diagram?

Question #4 Theta Ciphering MA0National Convention 2007

What is the area of an equiangular octagon with side lengths that alternate between 4 and 6 as shown in the diagram?

Question #5 Theta Ciphering MA0National Convention 2007

How many distinct positive integers are factors of 1512?

Question #5 Theta Ciphering MA0National Convention 2007

How many distinct positive integers are factors of 1512?

Question #5 Theta Ciphering MAONational Convention 2007

How many distinct positive integers are factors of 1512?

Question #5 Theta Ciphering MA0National Convention 2007

How many distinct positive integers are factors of 1512?

Question #6 Theta Ciphering MA0 National Convention 2007

Given that *p* is a prime number, p > 3, and that $\frac{1}{p} = .ABABABABAB...$, where *A* and *B* are distinct digits. What is *p*? Question #6 Theta Ciphering MA Θ National Convention 2007 Given that *p* is a prime number, p > 3, and that $\frac{1}{p} = .ABABABABAB...$, where

A and B are distinct digits. What is p?

Question #6 Theta Ciphering MA0 National Convention 2007

Given that *p* is a prime number, p > 3, and that $\frac{1}{p} = .ABABABABAB...$, where *A* and *B* are distinct digits. What is *p*? Question #6 Theta Ciphering MA Θ National Convention 2007 Given that *p* is a prime number, p > 3, and that $\frac{1}{p} = .ABABABABABA...$, where *A* and *B* are distinct digits. What is *p*? Question #7 Theta Ciphering MA0National Convention 2007

Given that
$$f(x) = \frac{ax^2 + b}{x^4 + c}$$
 and that
(1,2), $\left(2, \frac{5}{16}\right)$, and $\left(3, \frac{10}{81}\right)$ all lie on
 $f(x)$. Find $f(5) - f(-5)$.

Question #7 Theta Ciphering MA0National Convention 2007

Given that $f(x) = \frac{ax^2 + b}{x^4 + c}$ and that (1,2), $\left(2, \frac{5}{16}\right)$, and $\left(3, \frac{10}{81}\right)$ all lie on f(x). Find f(5) - f(-5).

Question #7 Theta Ciphering MAONational Convention 2007

Given that $f(x) = \frac{ax^2 + b}{x^4 + c}$ and that (1,2), $\left(2, \frac{5}{16}\right)$, and $\left(3, \frac{10}{81}\right)$ all lie on f(x). Find f(5) - f(-5). Question #7 Theta Ciphering MA0National Convention 2007

Given that $f(x) = \frac{ax^2 + b}{x^4 + c}$ and that (1,2), $\left(2, \frac{5}{16}\right)$, and $\left(3, \frac{10}{81}\right)$ all lie on f(x). Find f(5) - f(-5). Question #8 Theta Ciphering MAONational Convention 2007

What is the determinant of the matrix A^2

given that $A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 5 & -1 \\ 1 & 4 & 2 \end{bmatrix}$?

Question #8 Theta Ciphering MAONational Convention 2007

What is the determinant of the matrix A^2 given that $A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 5 & -1 \\ 1 & 4 & 2 \end{bmatrix}$?

Question #8 Theta Ciphering MA0National Convention 2007

What is the determinant of the matrix A^2 given that $A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 5 & -1 \\ 1 & 4 & 2 \end{bmatrix}$? Question #8 Theta Ciphering MA0National Convention 2007

What is the determinant of the matrix A^2 given that $A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 5 & -1 \\ 1 & 4 & 2 \end{bmatrix}$? Question #9 Theta Ciphering MA0National Convention 2007

What is |z|, given that z = a + bi, $i = \sqrt{-1}$, and $\frac{3x+7}{x^2-3x-4} = \frac{a}{x+4} + \frac{b}{x-1}$? Question #9 Theta Ciphering MAONational Convention 2007

What is |z|, given that z = a + bi, $i = \sqrt{-1}$, and $\frac{3x + 7}{x^2 - 3x - 4} = \frac{a}{x + 4} + \frac{b}{x - 1}$?

Question #9 Theta Ciphering MA0National Convention 2007

What is |z|, given that z = a + bi, $i = \sqrt{-1}$, and $\frac{3x+7}{x^2-3x-4} = \frac{a}{x+4} + \frac{b}{x-1}$? Question #9 Theta Ciphering MAONational Convention 2007

What is |z|, given that z = a + bi, $i = \sqrt{-1}$, and $\frac{3x + 7}{x^2 - 3x - 4} = \frac{a}{x + 4} + \frac{b}{x - 1}$? Question #10 Theta Ciphering MA0National Convention 2007

A cup is in the shape of inverted (point-down) right circular cone whose height is 10 cm and has a base radius equal to 5 cm. The cup is partially full of water and the water takes up 2.7% of the volume of the cup. What is the distance from the top of the water to the top of the cup (in cm)?

Question #10 Theta Ciphering MAO National Convention 2007

A cup is in the shape of inverted (point-down) right circular cone whose height is 10 cm and has a base radius equal to 5 cm. The cup is partially full of water and the water takes up 2.7% of the volume of the cup. What is the distance from the top of the water to the top of the cup (in cm)?

Question #10 Theta Ciphering MAONational Convention 2007

A cup is in the shape of inverted (point-down) right circular cone whose height is 10 cm and has a base radius equal to 5 cm. The cup is partially full of water and the water takes up 2.7% of the volume of the cup. What is the distance from the top of the water to the top of the cup (in cm)?

Question #10 Theta Ciphering MA0National Convention 2007

A cup is in the shape of inverted (point-down) right circular cone whose height is 10 cm and has a base radius equal to 5 cm. The cup is partially full of water and the water takes up 2.7% of the volume of the cup. What is the distance from the top of the water to the top of the cup (in cm)?

