Logs,Exponents/Radicals Solutions

Solutions: 1. <u>A</u>. $2Q^{3(x+2)} = 2^{4x}$ so exponents are equal: 3(x+2)+1=4x and x=7 and 10x=3. 2.<u>A</u>. $\frac{3^{4x}+3^{4x}}{3^{-x}}=6$ so $(2\mathfrak{G}^{4x})\mathfrak{G}^x = 6$ and so the 3 exponent must be equal to 1. So x=1/5. 3. B. Move terms to the left and factor by grouping: $x^{\frac{2}{3}}(x^{\frac{1}{3}}+4)-1(x^{\frac{1}{3}}+4)=0$ $(x^{\frac{1}{3}}+4)(x^{\frac{2}{3}}-1)=0$ gives q, r, s are 1 and -1, and -64 and grs/8 = 8. 4. D. Divide each side by x, and by 3 and get $\frac{2}{3} = x^{\frac{1}{3}}$ and then cube both sides to

get x=8/27. So a+2b=8+54=62. 5. <u>E</u>. $\sqrt{3} + 3 + \sqrt{27} = 4\sqrt{3} + 3$ so p+q=7.

6. <u>C</u>. Square the first equation to get

 $x + 2\sqrt{xy} + y = 36$ and using the second

equation gives x+y=36-4=32. 7. <u>C</u>. Cube root both sides to get $\frac{x+1}{x-1} = \frac{1}{2}$ 2007 Mu Alpha Theta National Convention which solves to x= -3, so |x|+1=4. 8. D. The domain of f is [1, inf) and the domain of g is (-inf, 1] so a and b are both 1. 9. **B**. Square both sides to get $x - \sqrt[3]{2 - (4)} = 16$. The inner parentheses comes from substitution of the original equation which was equal to 4. So $x = 16 - \sqrt[3]{2} = 2^4 - 2^{\frac{1}{3}}$ so 6(4)(1/3)=8. 10. <u>C</u>. Two values: x=1 and x=4. 11. **B**. The inverse of $y = x^{\frac{2}{5}}$ is $v = x^{\frac{5}{2}}$ for positive values of x. g(2)= $\sqrt{32}$. 12. **<u>D</u>**. $g(x) = \sqrt{x}$ and $\sqrt{x} > 20$ gives x > 400 but since q(x) must be an integer then x must be 21 squared, or 441. 13. **B**. The sum and difference of cubes formulas give $x^3 + 8 = 9$ and $y^3 - 27 = 10$ so $x^3 = 1$, $y^3 = 37$ and the product $(xy)^3 = 37$.

Logs,Exponents/Radicals Solutions

14. **D**. The expression simplifies
to
$$\frac{1}{4}x^{\frac{13}{2}}$$

so $4\left(\frac{1}{4}\right)\left(-\frac{13}{2}\right)$ gives -13/2.
15. **B**. $a^{\left(\frac{-1}{3}+\frac{-1}{2}+2\right)} = a^{\frac{1}{6}}$ so a is a
perfect sixth
power, the least of which is
 2^{6}
16. **D**. $f(3) = (8)^{\frac{2}{3}} = 4$ and
 $f(2) = 8^{\frac{1}{2}} = 2\sqrt{2}$.
17. **C**. $(2)^{(-3(-3))} = 512$
18. **B**. $(x+1)^{\frac{m}{17}} = 36$ and
 $x+1=36^{\frac{17}{m}}$, and
the values of m which give an
integer
answer are 2 or 17, since 36 is a
perfect
square. $x=36^{\frac{17}{2}}-1=6^{17}-1$. And
k=17.
19. **B**. $4^{\frac{1}{4}}=2^{\frac{2}{4}}=2^{\frac{1}{2}}$
20. **E**. $(12^{4}-1)=(12^{2}-1)(12^{2}+1)$
so 143
and 145 are both factors. The
first
factor can be reduced to (12-1)(12+1) so
11 and 13 are factors. All are
therefore

factors.

2007 Mu Alpha Theta National Convention

21. <u>B</u>. Square both sides to get $13 + 2\sqrt{22} = a + b + 2\sqrt{ab}$ so ab=22 and a+b=13. Integers 2 and 11 make both equations true, so a-b=9. 22. E. Factor $x^{3} + 7^{3} = (x + 7)(x^{2} - 7x + 49)$ and divide by x+7. 23. **<u>B</u>**. $\sum_{n=1}^{n} x = \frac{1}{2}n(n+1)$ and $\sum_{x=1}^{n} x^{3} = \left(\frac{1}{2}n(n+1)\right)^{2} \text{ so a-}$ b=0. If you do not know the formulas, then see the pattern by using two terms and then three terms. Each time the difference is 0.

24. $\underline{\mathbf{C}} \cdot \begin{pmatrix} 12 \\ 0 \end{pmatrix} + \begin{pmatrix} 12 \\ 1 \end{pmatrix} + \dots + \begin{pmatrix} 12 \\ 12 \end{pmatrix} = 2^{12}$

as each

row of Pascal's triangle gives 2^{that row} so b=12. 25. <u>A</u>. The equation gives

 $\log_2(\log_2 x) = 8$

and then $2^8 = \log_2 x$ and lastly $2^{2^8} = x$

and the only prime factor is 2.

Logs,Exponents/Radicals Solutions

2007 Mu Alpha Theta National Convention

26. **<u>B</u>**. $2^{\frac{x}{y}} = 2^{1+\frac{3}{x}}$ so $\frac{x}{y} = 1 + \frac{3}{x}$ and $\frac{x}{y} = \frac{x+3}{x}$ which solves to x^2 $\overline{x+3}$ 27. <u>D</u>. $3^{2x} - 3g^{x} + 2 = 0$ factors to $(3^{x}-2)(3^{x}-1)=0$. Since x is not O we know $3^{x} = 2$ so $3^{-x} = \frac{1}{2}$ 28. <u>A</u>. $a = x^{-1}, b = y^{-1}$ and solve the system a-b=1-1/4, 2a-5b=-1/3,to get a= -11/36 so x= -36/11. Take the absolute value and (36+2)/11 is the result. 29. C. $\frac{1}{1-i} + 1 + (1-i) + (-2i) + -2i(1-i)$ which gives $\frac{1+i}{2}$ +1+1-i-2i+-2i-2 $=\frac{1+i}{2}-5i=\frac{1}{2}-\frac{9}{2}i.$ 30. C. From the set $\{-4, -3, -1, 2, 3, 5\}$ we have possible exponents : $\frac{-4}{-3}, \frac{-4}{-1}, \frac{-4}{2}, \frac{-4}{3}, \frac{-4}{5},$