- $1.$ $\,$ $\,$ $\,$
- $2. \,$ C
- 3. A
- $4. \hbox{~A}$
- $5. \hbox{ \AA}$
- $6. \hbox{ \AA}$
- 7. E
- $8. \,$ B
- 9. A
- $10. \,$ E
- $11. \,$ C
- $12. \,$ B
- $13. \hbox{~A}$
- 14. E
- $15. \, B$
- $16. \,$ D
- 17. C
- $18. \hbox{~A}$
- 19. C
- $20. \,$ E
- $21. \,$ A
- $22. \,$ E
- $23. \; B$
- $24. \,$ D
- $25. \,$ D
- $26. \hbox{ \AA}$
- 27. D
- $28. \hbox{ \AA}$
- $29. \hbox{ \AA}$
- $30. \hbox{~A}$

1. Let a be the number of giraffes on Ellen's farm and let b be the number of humans on Ellen's farm. Then

$$
a + b = 20
$$

$$
4a + 2b = 56
$$

Then $4a + 2b - 2(a + b) = 56 - 2(20) \rightarrow 2a = 16 \rightarrow a = 8$. So there are 8 giraffes on Ellen's farm. $|D|$

- 2. $||x| 2| \le 2$ implies that $-2 \le |x| 2 \le 2$ which means that $0 \le |x| \le 4$. Finally we know that $-4 \leq x \leq 4$. Thus there are a total of 9 values that satisfy this inequality. $|C|$
- 3. The solutions enumerated are $(17,5)$, $(14, 10)$, \dots , $(2, 30)$. Thus there are 6 solutions to the equation. $|A|$
- 4. Subtracting $\tan \theta$ from both sides we get $\sin(2\theta) \tan \theta = 2 \sin \theta \cos \theta \frac{\sin \theta}{\cos \theta} = \sin \theta (2 \cos \theta \theta)$ 1 $(\frac{1}{\cos \theta}) = 0$ Then we have either $\sin \theta = 0$ or $2 \cos \theta - \frac{1}{\cos \theta} = 0$ Taking the latter case we get $2\cos^2\theta-1=0\rightarrow\cos\theta=\pm\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$. Then the angles which satisfy $\sin \theta = 0$, $\cos \theta = \pm \frac{\sqrt{2}}{2}$ 2 are $\theta = 0, \frac{\pi}{4}$ $\frac{\pi}{4}, \frac{3\pi}{4}$ $\frac{3\pi}{4}$, π and the sum is $0 + \frac{\pi}{4} + \frac{3\pi}{4} + \pi = 2\pi$ \boxed{A}
- 5. Combining the logs on the left side gives $\log_2 \frac{(x+3)^2}{x} = 4$. This means that $\frac{(x+3)^2}{x} = 16 \rightarrow$ $(x+3)^2 = 16x \rightarrow x^2 - 10x + 9 = (x-9)(x-1) = 0$. Then the sum of solutions for x is $9 + 1 = 10 |A|$
- 6. Squaring both sides of the equation gives $(\cos \theta + \sin \theta)^2 = \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta =$ $1+\sin(2\theta) = (\frac{5}{4})^2 \rightarrow \sin(2\theta) = \frac{25}{16} - 1 = \frac{9}{16}$. Then using Pythagorean identity, $\cos^2(2\theta) =$ $1 - \sin^2(2\theta) = 1 - \frac{81}{256} = \frac{175}{256} \rightarrow \cos(2\theta) = \frac{5\sqrt{7}}{16} \cancel{A}$
- 7. Since $\alpha + \beta + \gamma = \pi$, $\sin(\alpha + \beta) = \sin(\pi \alpha \beta) = \sin \gamma = \frac{4}{5}$ $\frac{4}{5}$. Then $\cos^2 \gamma = 1 - \sin^2 \gamma =$ $1 - \frac{16}{25} = \frac{9}{25} \to \cos \gamma = -\frac{3}{5} \left[E \right]$
- 8. Let r be the rate that Sanika and Beverly row, let c be the rate of the current, and let x be the length of the river. Then $10(r - c) = x$ and $6(r + c) = x$. Then $2r =$ $(r-c)+(r+c)=\frac{x}{10}+\frac{x}{6}=\frac{4x}{15} \Rightarrow \frac{15r}{2}=x$. Then it will take them $\frac{15}{2}$ hours to row along the river with no current. $|B|$
- 9. Since a, b, andc are odd integers we can say $a = 2a_0 + 1$, $b = 2b_0 + 1$, $c = 2c_0 + 1$ for non-negative a_0, b_0, c_0 . Substituting these in we get $2a_0 + 1 + 2(2b_0 + 1) + 2(2c_0 + 1) =$ $2a_0 + 4b_0 + 4c_0 + 5 = 81 \rightarrow a_0 + 2b_0 + 2c_0 = 38$. Then since 38 and $2b_0 + 2c_0$ are even, it's obvious that a_0 is even. Then we can say $a_0 = 2a_1$ for non-negative a_1 . Substituting that in we find that $2a_1 + 2b_0 + 2c_0 = 38 \rightarrow a_1 + b_0 + c_0 = 19$. By stars and bars we find that there are $\binom{21}{2}$ $\binom{21}{2}$ non-negative integer solutions (a_1, b_0, c_0) . Since every non-negative solution (a_1, b_0, c_0) corresponds to one positive odd solution (a, b, c) , there are $\binom{21}{2}$ $\binom{21}{2} = 210$ solutions. $|A|$
- 10. Since $|x|$ and $|y|$ are integers, it is obvious that the decimal parts of x and y are .4 and .6, respectively. Let $x = a + 0.4$ and $y = b + 0.6$ where a, b are integers. Then $3a + b = 10$. and $a + 2b = 5$. Then solving for a, b gives $a = 3, b = 1$. Then $x + y = 3.4 + 1.6 = 5 |E|$
- 11. The normal vector from the plane $x + 4y + 2z = 0$ is $\lt 1, 4, 2 >$. Then the vector $< 6+t, 9+4t, 2t >$ is perpendicular to the given plane and the point that is on the plane as well as the vector is given by $6 + t + 4(9 + 4t) + 2(2t) = 42 + 21t = 0 \rightarrow t = -2$. Then the point which is reflected is $(6 + 2(1)(-2), 9 + 2(4)(-2), 2(2)(-2)) = (2, -7, -8)$
- 12. $|||x-3|-3|-3|=3$ means that $||x-3|-3|=0,6$, then $|x-3|=-3,3,9$, and $x = -6, 0, 6, 12$. Then there are 4 solutions to Ben's equation. \boxed{B}
- 13. Substituting at the point when the expression repeats gives $\frac{\cos^2 \theta}{2 + \frac{1}{4}} = \frac{\cos^2 \theta}{\frac{9}{4}} = \frac{1}{4} \to \cos^2 \theta =$ $\frac{9}{16} \rightarrow \cos \theta = \frac{3}{4}$ $\frac{3}{4}$. Then $\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{9}{16} = \frac{7}{16} \rightarrow \sin \theta =$ $\sqrt{7}$ $\frac{9}{16} \rightarrow \cos \theta = \frac{3}{4}$. Then $\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{9}{16} = \frac{7}{16} \rightarrow \sin \theta = \frac{\sqrt{7}}{4}$. So $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{7}}{3}$
- 14. We can factor the left side giving $(x+3y)^2 = 9$. Then factoring by difference of squares gives $(x+3y-3)(x+3y+3) = 0$. Then $x+3y-3=0$ and $x+3y+3=0$ which is two parallel lines. $|E|$
- 15. We can find the normal vector to the plane by taking the cross product of two vectors between the three points. The vector from $(1, 7, 2)$ to $(7, 2, 9)$ is $\lt 6, -5, 7 >$. The vector from $(1, 7, 2)$ to $(2, 9, 1)$ is $\lt 1, 2, -1$. Then the cross product $\lt 6, -5, 7 > \lt \lt 6$ $1, 2, -1 >$ is i j k 6 −5 7 1 2 −1 $= -9i+13j+17k$ Then $A^2+B^2+C^2 = (-9)^2+(13)^2+(17)^2 =$ $81 + 169 + 289 = 539$
- 16. The shortest distance can be found by finding the distance between the center of the sphere and the plane and subtracting the radius. The distance between a point (a, b, c) and a plane $Ax + By + Cz = K$ is given by $D = \frac{|Aa + Bb + Cc - K|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|(3)(2) + (4)(-1) + (5)(3) - 2|}{\sqrt{3^2 + 4^2 + 5^2}} =$ $\frac{15}{\sqrt{50}} = \frac{3\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$. The radius of the sphere is $\sqrt{2}$. Thus the shortest distance between the sphere and the plane is $\frac{3\sqrt{2}}{2} - \sqrt{2} = \frac{\sqrt{2}}{2}$ D
- 17. Subtracting 2 times the first equation from the second equation gives $2x + 6y + 3z 1$ $2(x + y + z) = 4y + z = 9$. Subtracting 4 times the first equation from the third equation gives $4x + 2y + nz - 4(x + y + z) = -2y + (n - 4)z = 954 - 768 = 186$. Then $4y + z + 2(-2y + (n-4)z) = (2n-7)z = 9 + 2(186) = 381$. If we have $n = \frac{7}{2}$ $\frac{7}{2}$ then we get $0 = 381$ which is obviously false. \boxed{C}
- 18. Dividing through we get $\frac{3x^2-6x+7}{x-1} = 3(x-1) + \frac{4}{x-1}$. Then by AM-GM we know that $3(x-1) + \frac{4}{x-1} \ge 2\sqrt{3(x-1)\frac{4}{(x-1)}} = 2\sqrt{12} = 4\sqrt{3}$ which is achieved at $x = 1 + \frac{2}{\sqrt{3}}$ $\frac{1}{3}$ A
- 19. By using AM-GM we see that $x^3y + xy^2 + 9y \ge 3\sqrt[3]{9x^4y^4} = 3\sqrt[3]{9(9)^4} = 3\sqrt[3]{3^{10}} = 81\sqrt[3]{3}$ by using AM-GM we see that $x \, y + xy$
which is achieved at $x = \sqrt[3]{9}$, $y = 3\sqrt[3]{3}$ \boxed{C}
- 20. Substituting at the point at which the expression repeats gives $\sqrt{x + 4\sqrt{x+3}} = 3 \rightarrow$ $x^2 - 34x + 33 = 0$ which gives $x = 33, 1$. Clearly $x = 1$ satisfies the expression. E
- 21. Note that the 5th roots of unity are 1, cis 72°, cis 144°, cis 216°, cis 288°. The sum of roots is $1+\text{cis } 72^\circ+\text{cis } 144^\circ+\text{cis } 216^\circ+\text{cis } 288^\circ = 0$, which implies that the sum of the real parts of the roots must also be 0. This means that $1+\cos 72^{\circ} + \cos 144^{\circ} + \cos 216^{\circ} + \cos 288^{\circ} = 0$. Then since cos is an even function we know that $\cos 216^\circ = \cos (-216^\circ) = \cos 144^\circ$ and $\cos 288° = \cos (-288°) = \cos 72°$. Then, $1 + \cos 72° + \cos 144° + \cos 216° + \cos 288° =$ $1 + 2(\cos 72^\circ + \cos 144^\circ) = 0$. Thus, $\cos 72^\circ + \cos 144^\circ = -\frac{1}{2}\left[A\right]$

22. $1 = \cos^2 t + \sin^2 t = (\frac{x}{3})^2 + (\frac{y}{2})^2 = \frac{x^2}{9} + \frac{y^2}{4}$ $\frac{d^2}{4}$. This is an ellipse with area $ab\pi = (3)(2)\pi = 6\pi$ E

23.

$$
x = 3\tan(t) \rightarrow \tan(t) = \frac{x}{3}
$$

$$
y = 2\sec(t) \rightarrow \sec(t) = \frac{y}{2}
$$

$$
\sec^2(t) - \tan^2(t) = \frac{y^2}{4} - \frac{x^2}{9} = 1
$$

- $|B|$
- 24. Let n be the value of $f(15)$. Looking at the sequence of differences between the terms $\{1, 5, 11, 16, 18, n\}$ gives us $\{4, 6, 5, 2, n-18\}$. The sequence of second differences is then $\{2, -1, -3, n-20\}$. The sequence of third differences is $\{-3, -2, n-17\}$. The sequence of fourth differences is $\{1, n-15\}$. Since f is a quartic, the fourth differences must be constant. Then $n - 15 = 1 \rightarrow n = 16 \mid D$
- 25. First we know that the sum of the roots $p + q + r = 7$. Additionally, the sum of the roots taken two at a time is $pq + qr + pr = 12$. Now we can find $p^2 + q^2 + r^2 =$ $(p+q+r)^2-2(pq+qr+pr)=7^2-2(12)=25.$ Since p, q, r are roots of the equation we know that $p^3 - 7p^2 + 12p - 14 = 0$, $q^3 - 7q^2 + 12q - 14 = 0$, $r^3 - 7r^2 + 12r - 14$. Then $p^3 + q^3 + r^3 = 7(p^2 + q^2 + r^2) - 12(p + q + r) + 52 = 7(25) - 12(7) + 42 = 133 |D$

26. Since
$$
1 < \sqrt{2} < 2
$$
, $a_0 = 1$. Then $2 < \frac{1}{\sqrt{2}-1} < 3$ so $a_1 = 2$ \boxed{A}

- 27. The second convergent of π is given by $3 + \frac{1}{7 + \frac{1}{15}} = 3 + \frac{15}{106} = \frac{333}{106} \underline{D}$
- 28. The first convergent of $\sqrt{5}$ is $\frac{2}{1}$ which gives $2^2 5(1)^2 = -1$ is not a solution. The second convergent of $\sqrt(5)$ is $2+\frac{1}{4}=\frac{9}{4}$ which gives $9^2-5(4)^2=1$, thus $(9, 4)$ is the fundamental solution and $x_1 + y_1 = 9 + 4 = 13 \boxed{A}$
- 29. $x_2 + y_2$ $\sqrt{N} = (9 + 4\sqrt{5})^2 = 161 + 72\sqrt{5}$. So $x_2 + y_2 = 161 + 72 = 233$ \boxed{A}
- 30. The division algorithm tells us that $x^{80} 9x^{78} + 10 = (x^2 4x + 3)Q(x) + R(x)$ where $Q(x)$ has degree 78 and $R(x)$ has degree of at most 1. Then we know that $x^{80} - 9x^{78} + 10 =$ $(x^{2} - 4x + 3)Q(x) + Ax + B$. If we plug in $x = 1, 3$, we see that

$$
3^{80} - 9(3^{78}) + 10 = (3^2 - 4(3) + 3)Q(3) + 3A + B
$$

$$
1^{80} - 9(1^{78}) + 10 = (1^2 - 4(1) + 3)Q(1) + A + B
$$

which reduces to the equations

$$
10 = 3A + B
$$

$$
2 = A + B
$$

Solving this system gives $A = 4, B = -2$. So our remainder is $4x - 2 \mid A$