1. Since we know it's a polynomial, let's first place a bound on the degree. As 101^2 = 10201 > 454 we must have that the polynomial can be written in the form $ax + b$ Now notice 5(101) > 454 so it follows, $0 \le a \le 4$. Thus our polynomials are $4x + 50,3x +$ $151.2x + 252$, $x + 353.454$. Summing gives a total of $10x + 1260$ now plugging in 2019 we get a total of 21450 C

2. $cos(x) = \sqrt{1 - (sin(x))^2}$ where x is an acute angle. Now plugging in the givens we have $\cos \theta = \sqrt{\frac{2019^2-1}{3010}}$ $\frac{119^{2}-1}{2019}$ \rightarrow A + B = 2019² + 2018 = 379 $mod(1000)$

Summing the digits we get 19 B

- 3. Today is Thursday. 2019 leaves a remainder of 3 when divided by 7 so 2019 days from now it will be Sunday B
- 4. Notice the solid is going to be a cylinder and either the height is 5 or the radius is 5 so the sum of the volumes is

$$
(5^2 \times 6 + 6^2 \times 5)\pi \rightarrow K = 330 \rightarrow \mathbf{B}
$$

5. We have two cases, either the arguments differ by a multiple of 2π or the arguments sum to an odd multiple of π.

Case 1: $15x = 7x + 2\pi k \rightarrow x = \frac{\pi k}{4} \rightarrow 0 \le k < 8$ so we have 8 solutions here Case 2: 22 $x = (2k+1)\pi \rightarrow x = \frac{(2k+1)\pi}{22} \rightarrow 0 \le k \le 21$ so we have 22 solutions here. However note $\frac{\pi}{2}$ is double counted as it occurs in both cases. Summing we get a total of $30-1=29$ solutions E

- 6. Notice as $x \to -\frac{3\pi}{2}$ $\frac{m}{2}$ the function grows to infinity **E**
- 7. First remark the property $Trace(X) + Trace(Y) = Trace(X + Y)$ (See if you can prove it) Add the two given equations to get:

$$
5(X+Y) = \begin{pmatrix} 8 & 1 & 7 \\ 8 & 8 & 7 \\ 1 & 5 & 6 \end{pmatrix}
$$

Recalling that the trace is the sum of the elements of the main diagonal it follows the answer is 5 C

- 8. $a = \sin(x)$, $b = \cos(x) \rightarrow (a^2 + b^2)^2 = a^4 + b^4 + 2a^2b^2 \rightarrow a^4 + b^4 = 1 2a^2b^2$ So maximum is 1 E
- 9. Although the first instinct when seeing a base problem is to convert to base 10, noticing that the problem is way too computational under the given time constraints motivates the idea to see if there is a trick involved. Indeed note that 8 is a power of 2 namely 2^3

Hence we can use the trick where one digit in base 8 corresponds to a matching three digits base 2. For example $56₈ = 101110₂$ (The first three digits come from the 5 and the next three come from the 6)

Using this we find the given number is equivalent to $1011101100011110₂$ and so the answer is $10 \quad A$

10. We have a couple cases. One way Sean can win is if he wins the next three games

consecutively which occurs with probability $(\frac{4}{5})$ $\frac{4}{2}$ $\frac{4}{8}$ $\frac{4}{8}$ $\frac{1}{8}$, The other way is if he loses again to Jeremy but manages to pull 3 wins. Thus in the next 4 games we could have JSSS, SJSS, and SSJS. As any arrangement of Ss and Js has equal probability, the probability in this case is $\frac{3}{2^4} = \frac{3}{16}$ $\frac{3}{16}$. Summing the two cases gives total probability ହ $rac{5}{16}$ **B**

11. Using the formula $A = rs$ we see the inradius of the triangle is 4 Now set the triangle on the coordinate plane. Let the right angle be at the origin and the other vertices be (0,24) and (10,0) . We have the circumcenter to be the midpoint of the hypotenuse or (5,12) and in the incenter is (4,4) or (r, r) . Now using distance formula the distance is

$$
\sqrt{65} \rightarrow \mathbf{D}
$$

Note also the formula $D = \sqrt{R(r-2r)}$ could have been used as well

12. We can just do tan($\alpha + \beta$) and find the inverse. tan(α) = $\frac{3}{4}$ $\frac{3}{4}$, tan(β) = $\frac{5}{13}$ 13 3 $\frac{3}{4} + \frac{5}{12}$ 12 $1 - (\frac{3}{4})(\frac{5}{12})$ = 56 33 \rightarrow C

13. We first calculate the side of the equilateral triangle to have length $8\sqrt{3}$. Now draw lines from P to A , B , C , respectively. Denote $[X]$ to be the area of figure X. Then notice $[PAC] + [PAB] + [PCB] = [ABC]$ $4\sqrt{3}(7 + 1 + x) = 48\sqrt{3} \rightarrow x = 4 \rightarrow A$

14. $(AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 11 12 $\begin{pmatrix} 1 & 12 \\ 5 & 8 \end{pmatrix} \rightarrow A$

15. First we notice $A = 20$. This is not too difficult once we see that $2^{10} = 1024$, and $1000^2 = 1000000$

Hence we wish to compute d_5 . Working mod 10 we have

 $d_{n+3} \text{mod} 10 = [3d_{n+2} + 8(d_{n+1} + d_n)] \text{mod} 10 = [3d_{n+2} - 2(d_{n+1} + d_n)] \text{mod} 10$ Using the above we can just substitute the given values to arrive at 2 as the answer \rightarrow A 16. For $-1 \le a \le 1$ we have $\sin^{-1} a + \cos^{-1} a = \frac{\pi}{2}$ ଶ

 This can be seen by taking the sin of both sides of the equation and using sin addition (As an additional exercise see if you can carry out the proof \odot)

Then the equation simply becomes

$$
x^2\left(\frac{\pi}{2}\right) = 1 \to x = \pm \sqrt{\frac{2}{\pi}}
$$

Both solutions are defined so our answer is -2 \rightarrow E

17. Obviously if we pick a single element the determinant is non-zero. Hence if we can show that the rank is not 2 then obviously it is 1. Pick any 2 rows and any 2 elements from each row. Then the matrix is of the form $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$ $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$ which obviously has determinant 0 Thus the matrix has rank $1 \rightarrow B$

18. Since the polynomial has integral coefficients we know $1 - ki$ is a root. Hence for a fixed value of k We can construct the polynomial

$$
Q_k(x) = (x - 1 + ki)(x - 1 - ki) = (x^2 - 2x + k^2 + 1)
$$

Notice that the polynomial we seek is $G(x) = Q_1(x)Q_2(x)Q_3(x) \dots Q_{2019}(x)$ Now observe that $Q_k(1) = k^2$ hence $G(1) = 1^2 2^2 3^2 \dots 2019^2 = (2019!)^2$ Now to solve the problem it suffices to count the number of powers of 2 which divide 2019! Then double it

Using Legendre's this is just $\sum_{i=1}^{10} \left| \frac{2019}{2i} \right|$ $\frac{10}{i} = \left\lfloor \frac{2019}{2^i} \right\rfloor = 2011$ so the answer is 4022 **A**

19.
$$
r^2 - 2019^2 \rightarrow x^2 + y^2 = 2019^2 \rightarrow D
$$

20.
$$
\sum_{0}^{\infty} \frac{1}{3^n} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}.
$$
 $A = \sum_{0}^{\infty} \frac{n}{3^n}, \frac{A}{3} = \sum_{0}^{\infty} \frac{n}{3^{n+1}} \rightarrow \frac{2A}{3} = \sum_{0}^{\infty} \frac{1}{3^n} \rightarrow A = \frac{3}{4}$
$$
\frac{3}{4} + \frac{3}{2} = \frac{9}{4}.
$$

21. First we see that any number with units digit 1 will have units digit 1 after being raised to any nonnegative integral power so the valid numbers in this case are:1,11,21,20111-> 202 numbers

Similarly any number with units digit 9 will work in our case as any number with units digit 9 is odd so adding 1 to that number makes it even. But 9^{28} has units digit 1, hence the claim. This gives 202 numbers also

For units digits 3, and 7 we must have the exponent to be a multiple of 4 in order to produce a number with units digit 1. We know the exponent will either leave a remainder of 0 or 2 when divded by 4 so by symmetry we have 101 numbers that work for each of units digits 3 and units digit 7 so there are 202 numbers here Summing we get 606 numbers and so $D=606$ -> C

22. Notice that 20192019 = 3mod4. Notice however that $x^2 = 0.1$ mod 4. (This can be seen by testing 0,1,2,3. Hence the sum can never be 3. E

23. For a matrix to be non invertible the determinnat must be 0 One can see the determinant to be $k^3 - 9k^2$, so $k = 0.9$ are the solutions **C**

24. By definition arctan(x) lies in the first and fourth quadrants. The problem then reduces to determining the endpoints. We can work the problem in reverse. In particular tan $(\frac{\pi}{2})$ $\frac{\pi}{2}$) is undefined which eliminates endpoints A

25 Using the formula for sum of integers which is $\frac{n(n+1)}{2}$ it remains to sum

$$
-\frac{2}{(n)(n+1)} = \frac{2}{n} - \frac{2}{n+1}
$$
which telescopes to 2 **D**

26. We can calculate AB: <2,2,-4>, AC: <4,1,-3>, AD: <-1,0,2>

Thus we need to compute \vert 2 2 -4 $4 \quad 1 \quad -3$ -1 0 2 $\vert = -10 \rightarrow \vert -10 \vert = 10 \text{ C}$

27. Any number divisible by 2 but not 4 could be n This is because if b odd the number of petals is b, which is odd. If b is even then the number of petals is 2b but be is even so 2b has 2 factors of 2 hence divisible by 4. The answer is 6 **B**

28. With direct substitution we find $f(x + h) - f(x) = 4h + 2xh + h^2$.

Divide by h to get

 $4 + 2x + h \rightarrow h = 0 \rightarrow 2x + 4 \rightarrow C$

29. Notice the area bound is simply a rectangle with height 2019 and width 2019 hence the answer desired is 2019 B

30.

The problem can be in fact generalized to an isosceles triangle with side a and base .Notice that the top base of the rectangle splits the triangle into a smaller triangle and a trapezoidal figure. The smaller triangle is similar to the entire triangle. Call the base of the rectangle x and the height y , and let h be the height of the isosceles triangle

Now by similar triangles we have

$$
\frac{h-y}{h} = \frac{x}{b} \to xh + by = bh \to (*)xh + by \ge 2\sqrt{xhby} \to xy \le \frac{bh}{4}
$$

Where (*) follows by AM-GM. Now plugging in the givens for our problem we have the maximum area to be $12\sqrt{5} \rightarrow B$