1. **B**
$$
\begin{cases} 2x + 3y = 8 \\ x - 2y = -3 \end{cases}
$$
 translates to the matrix equation $\begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -3 \end{bmatrix}$.

2. A
$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 1(-1) + 2(3) & 1(2) + 2(-4) \\ 3(-1) + 4(3) & 3(2) + 4(-4) \end{bmatrix} = \begin{bmatrix} 5 & -6 \\ 9 & -10 \end{bmatrix}
$$
.

3. C
$$
\begin{bmatrix} -4 & 5 \\ 2 & -2 \end{bmatrix}^{-1} = \frac{1}{(-4)(-2)-2(5)} \begin{bmatrix} -2 & -5 \\ -2 & -4 \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} -2 & -5 \\ -2 & -4 \end{bmatrix} = \begin{bmatrix} 1 & \frac{5}{2} \\ 1 & 2 \end{bmatrix}
$$

- 4. C We know $det(rA) = r^n det(A)$ for some scalar r and n is the number of rows of A. Also, $det(A^{T}) = det(A)$ and $det(A^{-1}) = 1/det(A)$. Since the determinant is a multiplicative operator, $\det(B) = k^n(k)(k)(1/k) = k^{n+1}$.
- 5. E One way to check for singularity is to see if any row or column is a linear combination of the other rows or columns. In choice A, rows 1 and 2 are opposites so it is singular. In choice B, columns 1 and 3 are multiples of one another so it is singular. In choice C, rows 1 and 2 add to row 3, so this matrix is singular. In choice D, a row of zeros makes the matrix singular. Thus, no matrix is non-singular.
- 6. E For $\begin{cases} 2x + ky = 4 \\ 2x 2y = 6 \end{cases}$ $-3x - 2y = -6$ to be a dependent system, the coefficients of the two rows must be scalar multiples. Since the second equation is -3/2 times the first, we require $k(-3/2) = -2$ and $k = 4/3$. However, when $k = 4/3$, the two equations are simply multiples of each other. Therefore, the system is still consistent.
- 7. C Note $A^2 = \begin{bmatrix} -11 & -15 \\ 0 & 14 \end{bmatrix}$ $\begin{bmatrix} 11 & -13 \\ 9 & -14 \end{bmatrix}$. Thus, $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ -11 -15 $\begin{bmatrix} 11 & -15 \\ 9 & -14 \end{bmatrix} + \alpha$ $2 -5$ $\begin{bmatrix} 2 & -3 \\ 3 & 1 \end{bmatrix} + \beta \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $1 \quad 0$]. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $0 \quad 0$] $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\int \frac{-11 + 2\alpha + \beta}{\alpha + 2\alpha}$ + $\frac{1}{2}$ -15 – 5 α $\begin{bmatrix} 1 + 2\alpha + \beta & -15 - 5\alpha \\ 9 + 3\alpha & -14 + \alpha + \beta \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Thus, $\alpha = -3, \beta = 17$ and $\alpha + \beta = 14$. Note that the existence of such a quadratic is guaranteed by the Cayley-Hamilton Theorem.
- **8. B** Rather than repeated multiplication, note that $\frac{A}{2}$ represents a rotation

counterclockwise by 30 degrees about (0,0). So $\left(\frac{A}{2}\right)$ $\left(\frac{A}{2}\right)^7$ is a rotation counterclockwise

by 210 degrees.
$$
A^7 = 128 \begin{bmatrix} -\frac{\sqrt{3}}{2} & 1 \\ -1 & -\frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} -64\sqrt{3} & 64 \\ -64 & -64\sqrt{3} \end{bmatrix}
$$

- 9. D Choice D satisfies these four conditions of RREF:
	- 1. A row full of zeros must occur below a row with at least one nonzero entry.
	- 2. The leftmost nonzero entry of a row is 1. This is called a pivot.

3. A pivot of a row is the only nonzero entry of its column.

4. For two pivots, one in row i, column j and the other in row s, column t , if $i > j$ then $s > t$.

10. B The 2 vectors using (−2, 1, 3) as the origin are < 3, 4, 1 > and < 7, 1, 2 >. The area of the triangle is half the magnitude of their cross product $< 7, 1, -25 >$.

The area is $\frac{\sqrt{675}}{2} = \frac{15\sqrt{3}}{2}$. $\frac{1}{2}$.

- $11. B$ $-3 \quad x + 3$ | $\begin{vmatrix} -3 & x+3 \\ 2-x & 2 \end{vmatrix} = -3(2) - (2-x)(x+3) = 8$ so $-6 + x^2 + 3x - 2x - 6 = 8$ and $x^2 + x - 20 = 0$ so $(x + 5)(x - 4) = 0$ and $x = -5$ or $x = 4$. The sum of these values is -1.
- 12. C There are $(2)(2)(2)(2) = 16$ possible matrices. To be invertible, the determinant $ad-bc$ must be nonzero, so it can be either 1 or -1. If $ad-bc = 1$, then $ad = 1$ and $bc = 0$. So $a = d = 1$ and at least one of b, c is 0 resulting in 3 such cases. If $ad - bc = -1$, then $ad = 0$ and $bc = 1$. This similarly results in 3 such cases. Thus, there are 6 out of 16 ways for a probability of 3/8.

13. D
$$
2A + \begin{bmatrix} -1 & 0 \\ -1 & 3 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -3 & -1 \\ 8 & -4 \end{bmatrix} \rightarrow 2A = \begin{bmatrix} 4 & 4 \\ -2 & -4 \\ 6 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 2 & 2 \\ -1 & -2 \\ 3 & 0 \end{bmatrix}
$$

14. C. Use not true for all matrices for example $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ but

- 14. C I is not true for all matrices, for example, $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $1 \quad 2$] $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$. II (the associative property of multiplication) and III (the distributive property) are true.
- **15. D** Since $x = \frac{\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix}}{\begin{vmatrix} 4 & 31 \end{vmatrix}}$ $\begin{array}{c} \begin{array}{c} 4 & 3 \\ 1 & 5 \end{array} \end{array}$, we know the coefficient matrix is $\begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix}$. $\begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix}$. Also from $\begin{bmatrix} 6 & 1 \\ 1 & 2 \end{bmatrix}$. $2 \quad 3$ $\begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix}$ we know the constant matrix is $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Hence, the system is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ or $\begin{cases} 4x + 3y = 2 \\ x + 5y = 1 \end{cases}$ $x + 5y = -1.$ χ
- **16.** C The magnitude of $\left(\frac{1}{2} \right)$ \mathcal{Y} $Z₁$) is $\sqrt{x^2 + y^2 + z^2}$. To be an integer, we see that $x^2 + y^2 + z^2$ must be a perfect square. Of the choices, we see that the magnitude σ of 1 4 -8_l \int is $\sqrt{(1)^2 + (4)^2 + (-8)^2} = \sqrt{81} = 9.$ -1
- 17. A The magnitude of \vert 2 $-2₂$ \int is $\sqrt{(-1)^2 + (2)^2 + (-2)^2} = 3$. To be in the opposite $\mathbf 1$ L $\mathbf 1$ ଷ $\overline{1}$.

direction, we scale
$$
\vec{v}
$$
 by $-\frac{1}{3}$ to get $\left(-\frac{2}{3}\right)$.

18. C For -1 x -3 $x = 0$ 3 $-2 \quad x+1$ to not be invertible, the determinant must be 0:

$$
-1(0) - x(x(x + 1) - (2)(-3)) + 3(0) = -x(x2 + x - 6) = 0
$$

Factoring, $-x(x + 3)(x - 2) = 0$ so $x = 0, -3, 2$ whose sum is -1.

19. D We need $\vec{u} \cdot \vec{v} = 2x + 6 = 0$ so $x = -3$ and $\vec{u} \cdot \vec{w} = -2 - 6y = 0$ so $y = -1/3$. The product $xy = -3(-1/3) = 1$.

20. C
$$
\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$
 so A is not idempotent.
\n
$$
\begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}^2 = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 0 & 2 \\ 4 & 1 & 2 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}
$$
so B is not idempotent.
\n
$$
\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}^2 = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}
$$
so C is idempotent.

21. B From above, we know that powers of choice A will either be the identity or A.

Contract 5 -3 2]² $15 -9 6$ $10 \t -6 \t 4$ ൩ ଶ $=$ \vert $0 \quad 0 \quad 0$ $0 \quad 0 \quad 0$ $0 \quad 0 \quad 0$ \vert so B is nilpotent.

22. C One way to find the angle between two vectors is to consider the dot product. $\vec{u} \cdot \vec{v} = 3(2) - 1(1) = 5$, but also $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\theta) = \sqrt{10}\sqrt{5} \cos(\theta)$. Thus, $cos(\theta) = \frac{5}{\sqrt{6}}$ $\frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$. Thus, the acute angle between the vectors is 45°.

23. C We need to solve the system $\begin{cases} -a + 3b - 2c = 0 \\ 4a + 3b + a - 2c \end{cases}$ $4a + 2b + c = 0$. Multiplying the first row by 4 and adding it to the second, we find that $2b = c$. Then $a = 3b - 2c = 3b - 2(2b) = -b$. So $(a, b, c) = (-b, b, 2b)$ for some real b. We see that $a = -1$, $b = 1$, $c = 2$ fits this description. So the line is $-x + y = 2$, which is $\sqrt{2}$ away from the origin. $a \quad b \quad c \quad d$]

24. C Consider the 4x4 matrix
$$
A = \begin{bmatrix} a & b & c & a \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}
$$
. We know that $a + f + k + p = 3$

Now
$$
5A = \begin{bmatrix} 5a & 5b & 5c & 5d \\ 5e & 5f & 5g & 5h \\ 5i & 5j & 5k & 5l \\ 5m & 5n & 5o & 5p \end{bmatrix}
$$
 whose trace is $5(a+f+k+p) = 5(3) = 15$.

- 25. A $m^2 = |\vec{v} + \vec{w}|^2 = (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) = |\vec{v}|^2 + 2\vec{v} \cdot \vec{w} + |\vec{w}|^2$. Also $n^2 = |\vec{v} - \vec{w}|^2 = (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) = |\vec{v}|^2 - 2\vec{v} \cdot \vec{w} + |\vec{w}|^2$. Thus, $m^2 - n^2 = 4\vec{v} \cdot \vec{w}$ and hence $\vec{v} \cdot \vec{w} = \frac{1}{4}$ $\frac{1}{4}(m^2 - n^2).$
- 26. C We want the two vectors to not be a scalar multiple of one another. The only vector that does this is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\frac{1}{2}$.

27. **C** For $A =$ -2 3 7^{22} $\begin{bmatrix} x & 5 & z \\ y & -2 & -1 \end{bmatrix}$ to be symmetric, $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ −2 3 7 $3 \t 5 \t -2$ $7 -2 -1$ \vert , thus $x = 3, y = 7, z = -2$ and the sum is 8.

- 28. E For $\{$: $x + y = 8$ $x + z = 11,$ $y + z = 13$, we can add all three equations: $2(x+y+z) = 32$ so $x+y+z=16$. Subtracting each equation to get $x = 3$, $y = 5$, $z = 8$, and $xyz = 120$.
- 29. E None of the answer choices is true.
- $30. A$ $\begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = c$ χ $\begin{bmatrix} x \\ y \end{bmatrix}$ then $\begin{bmatrix} 2-c & -4 \\ -1 & -1 \end{bmatrix}$ $\begin{bmatrix} -c & -4 \\ -1 & -1 - c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. If $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ χ $\begin{bmatrix} x \\ y \end{bmatrix}$ is non-zero, then $\begin{bmatrix} 2-c & -4 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} -c & -4 \\ -1 & -1 - c \end{bmatrix}$ is singular, so its determinant is zero. $(2 - c)(-1 - c) - (-4)(-1) = (c - 2)(c + 1) - 4 = c² - c - 6 = 0.$ The solutions $c = 3$ and $c = -2$ have a product of -6. Note that these values of c are called "eigenvalues".