1. C
$$r = 5\cos \Theta - 8\sin \Theta$$

 $r^2 = 5r\cos \Theta - 8r\sin \Theta$
 $x^2 + y^2 = 5x - 8y$
 $x^2 + 5x + \frac{25}{4} + y^2 - 8y + 16 = \frac{25}{4} + 16$
 $\left(x - \frac{5}{2}\right)^2 + (y - 4)^2 = \frac{89}{4}$
 $(x - h)^2 + (y - k)^2 = radius^2$
Area of a circle $= \pi (radius)^2 = \frac{89\pi}{4}$ (c)

2. C
$$\sin\left(\frac{\pi x^2}{3}\right) = 1 \rightarrow \frac{\pi x^2}{3} = \frac{\pi}{2}$$
 since $-2 \le x \le 2$ Which gives $(x,y) = (\pm \frac{\sqrt{6}}{2}, \pm \frac{4-\sqrt{6}}{2})$
(b)

3. D

$$\cos \theta = \frac{a \cdot b}{|a||b|} = \frac{\langle 2,4,5 \rangle \cdot \langle 3,2,7 \rangle}{|\langle 2,4,5 \rangle |\langle 3,2,7 \rangle|} = \frac{49}{3\sqrt{5} \cdot \sqrt{62}} = \frac{49\sqrt{310}}{930} (d)$$
4. B

$$\frac{\cos 25^{\circ} \cos 65^{\circ} \cos 50^{\circ} \cos 100^{\circ} \cos 200^{\circ}}{\sin 40^{\circ} \sin 25^{\circ}} = \frac{\cos 25^{\circ} \sin 25^{\circ} \cos 50^{\circ} \cos 100^{\circ} \cos 200^{\circ}}{\sin 40^{\circ} \sin 25^{\circ}} = \frac{\cos 65^{\circ} \sin 100^{\circ} \cos 200^{\circ}}{4 \sin 4^{\circ} \sin 25^{\circ}} = \frac{\cos 65^{\circ} \sin 100^{\circ} \cos 200^{\circ}}{4 \sin 4^{\circ} \sin 25^{\circ}} = \frac{\cos 65^{\circ} \sin 100^{\circ} \cos 200^{\circ}}{4 \sin 4^{\circ} \sin 25^{\circ}} = \frac{1}{16} (b)$$

5. C Call tan x = a and tan y = b. Then we have
$$\frac{1}{a} + \frac{1}{b} = 7 \rightarrow \frac{a+b}{7} = ab \rightarrow ab = 6/7$$

Then the tangent sum formula gives $\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan(x)\tan(y)} = \frac{a+b}{1 - ab} = 42$
(c)

6. B The following function factors to $f(x) = (sin^2(x) + cos^2(x))(3 + cos^2(x))$ = 3 + cos²(x) Since the range of cos²(x) is [0,1[, the range of the functions is [3,4] (b)

7. A From the known fact that the inradius is the area over the semiperimeter we have $\frac{qrsin P}{p+q+r} = \frac{q+r-p}{2}$ This gives $2qrsin(P) = q^2 + r^2 + 2qr - p^2$ By law of cosines we have $q^2 + r^2 + 2qrcos P = p^2$ or $q^2 + r^2 + 2qr - p^2 = 2qr(1 + cos P)$ From this we have that $\sin P = 1 + \cos P \rightarrow \sin P - \cos P = 1$ Squaring gives $1 - \sin 2P = 1$ Solving gives $\angle P = \pi/2$ (A)

8. B If 0 < x ≤ π, then we know that sin x ≥ 0 and x³ + x² + 4x > 0. If the domain is π < x ≤ 2π, then clearly x³ + x² + 4x > 2 since the terms will all be positive. Thus there is no solution for x ≠ 0. The only solution that is possible is x = 0, so only 1 solution (b)

9. A
$$\sin(105^\circ) = \sin(60 + 45) = \sin(60^\circ)\cos(45^\circ) + \sin(45^\circ)\cos(60^\circ) = \frac{\sqrt{6}+\sqrt{2}}{4}$$

(a)

10. B A =
$$\cos \frac{\pi}{7} \cdot \cos \frac{2\pi}{7} \cdot \cos \frac{4\pi}{7}$$

Multiplying both sides by $\sin \frac{\pi}{7}$ we get $\sin \frac{\pi}{7} A = \sin \frac{\pi}{7} \cos \frac{\pi}{7} \cdot \cos \frac{2\pi}{7} \cdot \cos \frac{4\pi}{7}$ Where $\sin \frac{2\pi}{7} = \frac{1}{2} \sin \frac{\pi}{7} \cos \frac{\pi}{7}$.

Using double-angle for the sin functions we'll eventually get A = $\frac{\sin \frac{8\pi}{7}}{8 \sin \frac{\pi}{7}} = -\frac{1}{8}$ (b)

11. A
$$\tan(\arccos(\sin(-\frac{\pi}{6})) = \tan\left(\arccos\left(-\frac{1}{2}\right)\right) = \tan\left(\frac{2\pi}{3}\right) = -\sqrt{3}$$
 (a)
12. D From the well-known fact $\sin(x - y) = \sin(x)\cos(y) - \sin(y)\cos(x)$

we get
$$x - y = \sin^{-1}(\sin(x)\cos(y) - \sin(y)\cos(x))$$

Call $\sin(x) = \frac{1}{\sqrt{n}}$ so then we know $\cos(x) = \sqrt{1 - \frac{1}{n}} = \frac{\sqrt{n-1}}{\sqrt{n}}$
Call $\cos(y) = \frac{\sqrt{n}}{\sqrt{n+1}}$ therefore $\sin(y) = \sqrt{1 - \frac{n}{n+1}} = \frac{1}{\sqrt{n+1}}$
Thus, we have
 $x - y = \sin^{-1}(\frac{1}{\sqrt{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} - \frac{1}{\sqrt{n+1}} \cdot \frac{\sqrt{n-1}}{\sqrt{n}}) = \sin^{-1}(\frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n+1}})$
 $x = \sin^{-1}\frac{1}{\sqrt{n}}$
 $y = \sin^{-1}\frac{1}{\sqrt{n+1}}$
 $\sum_{n=1}^{\infty} \sin^{-1}(\frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n+1}}) = \sum_{n=1}^{\infty} \sin^{-1}(\frac{1}{\sqrt{n}}) - \sum_{n=1}^{\infty} \sin^{-1}(\frac{1}{\sqrt{n+1}})$ which telescopes to answer $\sin^{-1} 1 = \frac{\pi}{n}(d)$

- to answer $\sin^{-1} 1 = \frac{\pi}{2}(d)$ 13. B By DeMoivre's we have $\sum_{k=1}^{2019} cis(2\pi k)$ Therefore our total sum is 2019. (b) 14. B $\prod_{n=1}^{89} (\tan n^{\circ} \cos 1^{\circ} + \sin 1^{\circ}) = \prod_{n=1}^{89} \frac{\sin n^{\circ} \cos 1^{\circ} + \cos n^{\circ} \sin 1^{\circ}}{\cos n^{\circ}} = \prod_{n=1}^{89} \frac{\sin(n^{\circ} + 1^{\circ})}{\cos n^{\circ}} = \frac{\sin 2^{\circ} \sin 3^{\circ} \sin 4^{\circ} \dots \sin 90^{\circ}}{\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 89^{\circ}} = \frac{\cos 88^{\circ} \cos 87^{\circ} \cos 86^{\circ} \dots \cos 89^{\circ}}{\sin 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \dots \cos 89^{\circ}} = \frac{\sin 90^{\circ}}{\sin 1^{\circ}} = \csc 1^{\circ}$ (b)
- 15. E An odd function is defined as when

$$f(x) = -f(x)$$

When testing this for all the functions, this satisfies for I, II, and IV (e)

- 16. C This expression is equivalent to $\cos\left(x + \frac{3\pi}{2}\right) = \sin x$. Given the domain is in quadrant IV, the value of $\sin x = -3/5$ (c)
- 17. A By product-to-sum we have $\frac{\frac{1}{2}(\cos(68) + \cos(60)) - \frac{1}{2}(\cos(112) + \cos(60))}{\frac{1}{2}(\cos(112) + \cos(30)) - \frac{1}{2}(\cos(68) + \cos(30))} = \frac{\frac{1}{2}(\cos(68) - \cos(112))}{\frac{1}{2}(\cos(112) - \cos(68))} = -1$

18. A Factoring the left hand side we get

 $(\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x)$ $= (\sin x + \cos x)(-\sin x \cos x + 1)$ Moving everything in the equation to one side we get $(\sin x + \cos x)(-\sin x \cos x + 1) - \frac{1}{2}(\sin x + \cos x) = 0$ Factoring we get $(\sin x + \cos x)(-\sin x \cos x + \frac{1}{2}) = 0$ We then have the equations $\sin x + \cos x = 0$ and $(-\sin x \cos x + \frac{1}{2}) = 0$ From the first equation we get the solutions $\frac{3\pi}{4}$, $\frac{7\pi}{4}$ and second we get $\frac{\pi}{4}$, $\frac{5\pi}{4}$ The sum is therefore 4π (a) 19. B . By using our knowledge of the unit circle we have $\cos 135^\circ + \sin \frac{7\pi}{6} - \cot 300^\circ - \sec \frac{11\pi}{6} + \csc 45^\circ - \tan \frac{7\pi}{4} = -\frac{\sqrt{2}}{2} - \frac{1}{2} + \frac{\sqrt{3}}{3} - \frac{1}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{3$ $\frac{2\sqrt{3}}{2} + \sqrt{2} + 1 = \frac{1}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2}$ (b) 20. D We can rewrite the expression as $9xsin x + \frac{4}{xsin x}$ Then by AM-GM, we have that $9xsin x + \frac{4}{xsin x} \ge 12$. There for our minimum is 12 (d) 21. B $\sin(x + y) = \sin x \cos y + \cos x \sin y = \left(\frac{3}{5}\right) \left(-\frac{12}{13}\right) + \left(-\frac{4}{5}\right) \left(-\frac{5}{13}\right) = -\frac{16}{65}$. (b) 22. B Let $S_1 = \cos\left(\frac{2\pi}{2019}\right) + \cos\left(\frac{4\pi}{2019}\right) + \cos\left(\frac{6\pi}{2019}\right) + \cos\left(\frac{8\pi}{2019}\right) \dots + \cos\left(\frac{2018\pi}{2019}\right)$ and let $S_2 = \cos\left(\frac{-2\pi}{2019}\right) + \cos\left(\frac{-4\pi}{2019}\right) + \cos\left(\frac{-6\pi}{2019}\right) + \cos\left(\frac{-8\pi}{2019}\right) \dots + \cos\left(\frac{-2018}{2019}\right)$. Clearly, $S_1 = S_2$ since cosine is an odd function. Further, $1 + S_1 + S_2$ is equivalent to the real part of the sum of the 2019 roots of unity, which is 0. Therefore, $S_1 = S_2 = -\frac{1}{2}$. (b) 23. C $r = 7(\cos^2 9\theta - \sin^2 \theta) = 7\cos(18\theta)$ In $r = a \cos(n\theta)$ if n is an even number, the number of petals is 2n, therefore the answer is 36 (c) Let O be the airport, A be the point where Steve must turn to catch up to the 24. C helicopter, and B be the point where he catches up to the helicopter. Then OA + AB = 4800, since Steve has 4 hours of fuel, and OB = 1200, as the helicopter also would fly for 4 hours. As numbers are quite large, we will call OB = a, OA = b, which makes AB = 4a - b. We need to solve for b. $\angle 0 = 120^\circ$. By law of cosine, we have $a^2 + b^2 - 2ab \cos 120^\circ = (4a - b)^2$ Expanding, $a^2 + b^2 + ab = 16a^2 - 8ab + b^2$, or $a^2 + ab = 16a^2 - 8ab$, since a = 1200, a + b = 16a - 8b, and 9b = 15a, or $b = \frac{5}{3}(1200) = 2000$.

25. D The sum telescopes to $\lim_{n \to \infty} (\tan^{-1}(1) - \tan^{-1}(n+1))$ which clearly computes to $\frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}$ (d)

26. C
$$\cos(\cos(x + \pi)) = \cos(-\cos(x)) = \cos(\cos(x))$$
 so the period is π (c)

27. B $\lim_{x \to 0} \frac{\sin x}{\sin 2x} = \lim_{x \to 0} \frac{\sin x}{2\cos x \sin x} = \lim_{x \to 0} \frac{1}{2\cos x} = \frac{1}{2}$ (b)

28. E
$$x = n\pi, n \in Z \to 2 < n\pi < 19 \to \frac{2}{\pi} < n < \frac{19}{\pi} \to 0 < n < 7$$

So we have 6 solutions. (e)

29. C First find the period of both of the sin and cos functions, which are ½ and 2/5, respectively. The period of the entire function will be the lcm of the two periods, which is 2. (c)

30. E
$$\tan 3x = \frac{\sin 3x}{\cos 3x} = \frac{3 \sin x - 4 \sin^3(x)}{4 \cos^3(x) - 3 \cos x} = \tan x \cdot \frac{3 - 4 \sin^2(x)}{4 \cos^2(x) - 3} = \tan x \cdot \frac{3 - 4 \sin^2(x)}{4 \cos^2(x) - 3} = \tan x \cdot \frac{3 (\sin^2(x) + \cos^2(x)) - 4 \sin^2(x)}{4 \cos^2(x) - 3 (\sin^2(x) + \cos^2(x))} = \tan x \cdot \frac{3 \cos^2(x) - \sin^2(x)}{\cos^2(x) - 3 \sin^2(x)} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}} = \tan x \cdot \frac{3 - \frac{\sin^2(x)}{\cos^2(x)}}{1 - 3 \frac{\sin^2(x)}{\cos^2(x)}}$$