Answers:

1.	38
2.	$y=-\frac{2}{3}$
3.	5 108
4.	\$40.40
5.	-120
6.	18π
7.	-2a + 2b - 4c
8.	120
9.	$(-\infty,1)\cup [2,\infty)$
10.	100
11.	1150
12.	(3,9)
13.	$8\sqrt{3}\pi$
14.	672
15.	$\frac{\sqrt{14}}{7}$
16.	[3,∞)
17.	False
18.	(13,-11)
19.	73
20.	2
21.	2,037,172
22.	y = 2x + 7
23.	29.75
24.	$-\frac{20}{21}$
25.	$\frac{11}{2}$

Solutions:

1. By Vieta's formula, the sum of the solutions is
$$-\frac{-76}{2} = 38$$
.

- 2. Since the numerator and the denominator both have degree 2, the horizontal asymptote is at the ratio of the leading coefficients: $y = -\frac{2}{3}$.
- 3. The only ways to roll a sum of 16 are: 6-6-4 (3 ways), 6-5-5 (3 ways), 6-6-5 (3 ways), and 6-6-6 (1 way). Since there are $6^3 = 216$ different possible rolls, the probability is $\frac{10}{216} = \frac{5}{108}.$

4.
$$A = 1000 \left(1 + \frac{.04}{2} \right)^{2.1} = 1000 \left(1.02 \right)^2 = 1000 \left(1.0404 \right) = 1040.40$$
. The interest is \$40.40.

5.
$$\begin{vmatrix} -1 & 2 & -3 \\ 4 & 5 & 6 \\ -7 & 8 & -9 \end{vmatrix} = 45 - 84 - 96 - 105 + 48 + 72 = -120$$

6.
$$0 = 27x^{2} + 12y^{2} + 108x - 72y - 108 = 27(x+2)^{2} + 12(y-3)^{2} - 324$$
$$\Rightarrow \frac{(x+2)^{2}}{12} + \frac{(y-3)^{2}}{27} = 1, \text{ so the enclosed area is } \pi(2\sqrt{3})(3\sqrt{3}) = 18\pi$$

7.
$$(2a-3b-2c)-(4a-5b+2c)=-2a+2b-4c$$

8. BUBBLE has six letters, three of which are B, so the number is
$$\frac{6!}{3!} = 120$$

9. The function has a horizontal asymptote at y = 1 that it never intersects, and vertical asymptotes at x = 2 and x = -2. These asymptotes completely divide the graph, and since the graph has x-intercepts at $(2\sqrt{2},0)$ and $(-2\sqrt{2},0)$, part of the range consists of $(-\infty,1)$. For the interval (-2,2), since there are no x-intercepts, the graph goes up toward both vertical asymptotes. The point (0,2) is on the graph, and that is the lowest point on that portion of the graph since as x increases in the interval (0,2), y increases as well, making the range on this portion $[2,\infty)$, making the range $(-\infty,1)\cup[2,\infty)$.

- 10. Since Todd's average over three tests was an 88, the sum of those scores was 3.88 = 264. Since Todd's average over all four tests was a 91, the sum of all four scores was 4.91 = 364. Therefore, Todd's fourth test score was 364 264 = 100.
- 11. Since the common difference is 3 and $82 = 10 + 24 \cdot 3$, this series has 25 terms. Therefore, the sum of the series is $\frac{25}{2}(10+82)=1150$.

12. Written in vertex form,
$$-4y + 18 = 2x^2 - 12x \Rightarrow -4y = 2(x-3)^2 - 36$$

 $\Rightarrow y = -\frac{1}{2}(x-3)^2 + 9$, so the vertex is at (3,9).

13.
$$0 = 3x^{2} + 4y^{2} - 12x + 8y - 32 = 3(x^{2} - 4x + 4) + 4(y^{2} + 2y + 1) - 32 - 12 - 4$$
$$\Rightarrow 3(x - 2)^{2} + 4(y + 1)^{2} = 48 \Rightarrow \frac{(x - 2)^{2}}{16} + \frac{(y + 1)^{2}}{12} = 1, \text{ so the area is } \pi \cdot 4 \cdot 2\sqrt{3} = 8\sqrt{3}\pi.$$

14. The constant would be
$$\binom{9}{3} (2x^2)^3 (-\frac{1}{x})^6 = 84 \cdot 2^3 \cdot (-1)^6 = 672$$
.

15. Drawing a right triangle with hypotenuse length 3, the leg adjacent to θ has length $\sqrt{7}$, so the leg opposite to θ has length $\sqrt{2}$ (according to Pythagorean Theorem).

Therefore,
$$\tan\theta = \frac{\sqrt{2}}{\sqrt{7}} = \frac{\sqrt{14}}{7}$$
.

- 16. Since $(f \circ g)(x)$ is a polynomial, the domain of the composite function will be the same as the domain of its inner function g. This domain is $[3,\infty)$.
- 17. A complex number is one of the form a + bi, where a and b are integers. Allowing b = 0 means that all real numbers are complex numbers, which is contradictory to the statement, making the given statement False.
- 18. Multiplying the first equation by -4, the second equation by 3, then adding the two resulting equations yields x = 13. Plugging this into either given equation yields y = -11, so the solution is the ordered pair (13, -11).

19.
$$|-48+55i| = \sqrt{(-48)^2+55^2} = \sqrt{2304+3025} = \sqrt{5329} = 73$$

- 20. Let $f(x) = -3x^8 + 3x^4 + 3x^2 + 3$, which is written in standard form. Since this polynomial has exactly one sign change, it has exactly one positive root (which would be a solution to the given equation) by Descartes' Rule of Signs. Further, f(x) = f(-x), so this polynomial also has exactly one negative root, also a solution to the equation. Since 0 is not also a root, this equation has exactly 2 real solutions.
- 21. By definition, $a_n a_{n-1} = (n-1)$, $a_{n-1} a_{n-2} = (n-2)$, $a_{n-2} a_{n-3} = (n-3)$, ..., $a_2 a_1 = 1$. Summing all of these equations telescopes the left hand side and yields the equation $a_n - a_1 = 1 + 2 + ... + (n-1) = \frac{(n-1)n}{2} \Rightarrow a_n = a_1 + \frac{(n-1)n}{2} = 1 + \frac{(n-1)n}{2}$. Therefore, $a_{2019} = 1 + \frac{2018 \cdot 2019}{2} = 2,037,172.$
- 22. The non-vertical asymptote will be the slant asymptote. Since $\frac{2x^2 + x 3}{x 3}$

$$=2x+7+\frac{10}{x-3}$$
, the non-vertical asymptote is $y=2x+7$.

23. Since this is a quadratic function that opens downward, the maximum will occur at the vertex. The x-coordinate is $x = -\frac{-15}{2(-3)} = -\frac{5}{2}$, so the maximum value is $f\left(-\frac{5}{2}\right)$ = $-3\left(-\frac{5}{2}\right)^2 - 15\left(-\frac{5}{2}\right) + 11 = -\frac{75}{4} + \frac{75}{2} + 11 = \frac{119}{4} = 29.75$.

24. The common ratio *r* satisfies
$$\frac{45}{64} = -\frac{5}{3}r^3 \Rightarrow r^3 = -\frac{27}{64} \Rightarrow r = -\frac{3}{4}$$
, so the sum of the infinite geometric series is $\frac{-\frac{5}{3}}{1-\left(-\frac{3}{4}\right)} = \frac{-\frac{5}{3}}{\frac{7}{4}} = -\frac{20}{21}$.

25. The area is the absolute value of $\frac{1}{2} \begin{vmatrix} 2 & -4 & 1 \\ -1 & -3 & 1 \\ -5 & 2 & 1 \end{vmatrix} = \frac{1}{2} (-6 + 20 - 2 - 15 - 4 - 4) = -\frac{11}{2}$, which

is
$$\frac{11}{2}$$