#1 Calculus – Hustle MA© National Convention 2019

Find a polynomial expression for f'(x) if

 $f(x) = 3x^3 - 11x^2 - 10x + 5.$

#1 Calculus – Hustle MA© National Convention 2019

Find a polynomial expression for f'(x) if $f(x) = 3x^3 - 11x^2 - 10x + 5$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#1 Calculus – Hustle MA© National Convention 2019

Find a polynomial expression for f'(x) if

 $f(x) = 3x^3 - 11x^2 - 10x + 5.$

#1 Calculus – Hustle MA© National Convention 2019

Find a polynomial expression for f'(x) if

 $f(x) = 3x^3 - 11x^2 - 10x + 5.$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#2 Calculus – Hustle MA© National Convention 2019

If $g(x) = \frac{x^2 - 1}{2x^3 + 1}$, evaluate g'(2).

#2 Calculus – Hustle MA© National Convention 2019

If
$$g(x) = \frac{x^2 - 1}{2x^3 + 1}$$
, evaluate $g'(2)$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#2 Calculus – Hustle MA© National Convention 2019

If
$$g(x) = \frac{x^2 - 1}{2x^3 + 1}$$
, evaluate $g'(2)$.

#2 Calculus – Hustle MA© National Convention 2019

If
$$g(x) = \frac{x^2 - 1}{2x^3 + 1}$$
, evaluate $g'(2)$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#3 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to -2} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

#3 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to -2} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#3 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to -2} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

#3 Calculus - Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to -2} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#4 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to \infty} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

#4 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to \infty} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#4 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to \infty} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

#4 Calculus – Hustle MA® National Convention 2019

Evaluate: $\lim_{x \to \infty} \frac{2x^2 - 10x - 28}{3x^2 + 2x - 8}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#5 Calculus – Hustle MA© National Convention 2019

Find the open interval over which the function $f(x) = x^3 + 3x^2 - 24x + 28$ is decreasing, written in interval notation.

#5 Calculus – Hustle MA© National Convention 2019

Find the open interval over which the function $f(x) = x^3 + 3x^2 - 24x + 28$ is decreasing, written in interval notation.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#5 Calculus – Hustle MA© National Convention 2019

Find the open interval over which the function $f(x) = x^3 + 3x^2 - 24x + 28$ is decreasing, written in interval notation.

#5 Calculus – Hustle MA© National Convention 2019

Find the open interval over which the function $f(x) = x^3 + 3x^2 - 24x + 28$ is decreasing, written in interval notation.

Round 1 2 3 4 5

Answer : _____

#6 Calculus – Hustle MA© National Convention 2019

Find the ordered pair for the point of inflection of the function $f(x) = x^3 + 3x^2 - 24x + 28$.

#6 Calculus – Hustle MA© National Convention 2019

Find the ordered pair for the point of inflection of the function $f(x) = x^3 + 3x^2 - 24x + 28$.

Answer	·
--------	---

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#6 Calculus – Hustle MA© National Convention 2019

Find the ordered pair for the point of inflection of the function $f(x) = x^3 + 3x^2 - 24x + 28$.

#6 Calculus – Hustle MA© National Convention 2019

Find the ordered pair for the point of inflection of the function $f(x) = x^3 + 3x^2 - 24x + 28$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#7 Calculus – Hustle MA® National Convention 2019

Evaluate: $\int_{0}^{1} \frac{2x}{x^{2}+1} dx$

#7 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{1} \frac{2x}{x^{2}+1} dx$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#7 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{1} \frac{2x}{x^{2}+1} dx$

#7 Calculus - Hustle MA© National Convention 2019

Evaluate: $\int_0^1 \frac{2x}{x^2 + 1} dx$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#8 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_0^1 \frac{2}{x^2 + 1} dx$

#8 Calculus - Hustle MA© National Convention 2019

Evaluate:
$$\int_0^1 \frac{2}{x^2 + 1} dx$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#8 Calculus - Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{1} \frac{2}{x^{2}+1} dx$

#8 Calculus - Hustle MA© National Convention 2019

Evaluate: $\int_0^1 \frac{2}{x^2 + 1} dx$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#9 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x\to 0} \frac{\ln(1-x) - \sin x}{1 - \cos^2 x}$ (and yes, in case you were wondering, this is the limit from *Mean Girls*)

#9 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x \to 0} \frac{\ln(1-x) - \sin x}{1 - \cos^2 x}$ (and yes, in case

you were wondering, this is the limit from *Mean Girls*)

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#9 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x\to 0} \frac{\ln(1-x) - \sin x}{1 - \cos^2 x}$ (and yes, in case you were wondering, this is the limit from *Mean Girls*)

#9 Calculus – Hustle MA© National Convention 2019

Evaluate: $\lim_{x\to 0} \frac{\ln(1-x) - \sin x}{1 - \cos^2 x}$ (and yes, in case you were wondering, this is the limit from *Mean Girls*)

Round 1 2 3 4 5

Answer : _____

#10 Calculus - Hustle MA© National Convention 2019

Evaluate f''(e) for $f(x) = x^x$.

#10 Calculus – Hustle MA© National Convention 2019

Evaluate f''(e) for $f(x) = x^x$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#10 Calculus - Hustle MA© National Convention 2019

Evaluate f''(e) for $f(x) = x^x$.

#10 Calculus – Hustle MA© National Convention 2019

Evaluate f''(e) for $f(x) = x^x$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#11 Calculus – Hustle MA© National Convention 2019

A sponge in the shape of a right circular cylinder is expanding in such a way that its base radius is always half of its height. At the moment when the base radius is 2 inches, the radius is expanding at a rate of 0.5 inch per second. Find the rate at which the volume of the sponge is expanding at this moment, in cubic inches per second.

#11 Calculus – Hustle MA© National Convention 2019

A sponge in the shape of a right circular cylinder is expanding in such a way that its base radius is always half of its height. At the moment when the base radius is 2 inches, the radius is expanding at a rate of 0.5 inch per second. Find the rate at which the volume of the sponge is expanding at this moment, in cubic inches per second.

Answer :

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#11 Calculus – Hustle MA© National Convention 2019

A sponge in the shape of a right circular cylinder is expanding in such a way that its base radius is always half of its height. At the moment when the base radius is 2 inches, the radius is expanding at a rate of 0.5 inch per second. Find the rate at which the volume of the sponge is expanding at this moment, in cubic inches per second.

#11 Calculus – Hustle MA© National Convention 2019

A sponge in the shape of a right circular cylinder is expanding in such a way that its base radius is always half of its height. At the moment when the base radius is 2 inches, the radius is expanding at a rate of 0.5 inch per second. Find the rate at which the volume of the sponge is expanding at this moment, in cubic inches per second.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

#12 Calculus – Hustle MA© National Convention 2019

The region bounded by the *x*-axis, the vertical

lines x = 1 and x = e, and the curve $y = \frac{1}{x}$ is

divided into two regions of equal area by the vertical line x = a. Find the numerical value of a.

#12 Calculus – Hustle MA© National Convention 2019

The region bounded by the *x*-axis, the vertical

lines x = 1 and x = e, and the curve $y = \frac{1}{x}$ is

divided into two regions of equal area by the vertical line x = a. Find the numerical value of a.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#12 Calculus – Hustle MA® National Convention 2019

The region bounded by the *x*-axis, the vertical lines x = 1 and x = e, and the curve $y = \frac{1}{x}$ is

divided into two regions of equal area by the vertical line x = a. Find the numerical value of a.

#12 Calculus – Hustle MA© National Convention 2019

The region bounded by the *x*-axis, the vertical lines x = 1 and x = e, and the curve $y = \frac{1}{x}$ is divided into two regions of equal area by the vertical line x = a. Find the numerical value of *a*.

Answer :	
----------	--

Answer : _____

Round 1 2 3 4 5

#13 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^6 x) dx$ (hint: if you know Wallis's integral formulas, use them here)

#13 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^{6} x) dx$ (hint: if you know Wallis's integral formulas, use them here)

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#13 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^{6} x) dx$ (hint: if you know Wallis's integral formulas, use them here)

#13 Calculus – Hustle MA© National Convention 2019

Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^6 x) dx$ (hint: if you know Wallis's integral formulas, use them here)

Answer : _____

Round 1 2 3 4 5

Answer : _____

#14 Calculus – Hustle MA© National Convention 2019

Find the volume of the solid generated when the region in the first quadrant bounded by $y=9-x^2$ and $y=1+x^2$ is revolved about the y-axis.

#14 Calculus – Hustle MA© National Convention 2019

Find the volume of the solid generated when the region in the first quadrant bounded by $y=9-x^2$ and $y=1+x^2$ is revolved about the *y*-axis.

Answer :	_
----------	---

Round 1 2 3 4 5

#14 Calculus – Hustle MA© National Convention 2019

Find the volume of the solid generated when the region in the first quadrant bounded by $y=9-x^2$ and $y=1+x^2$ is revolved about the *y*-axis.

Answer : _____

Round 1 2 3 4 5

#14 Calculus – Hustle MA© National Convention 2019

Find the volume of the solid generated when the region in the first quadrant bounded by $y=9-x^2$ and $y=1+x^2$ is revolved about the *y*-axis.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#15 Calculus – Hustle MA© National Convention 2019

A solid has a circular base with radius 4. Crosssections perpendicular to the base are in the shape of a regular hexagon such that one side of the hexagon lies on the circular base. Find the volume of the solid.

#15 Calculus – Hustle MA© National Convention 2019

A solid has a circular base with radius 4. Crosssections perpendicular to the base are in the shape of a regular hexagon such that one side of the hexagon lies on the circular base. Find the volume of the solid.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#15 Calculus – Hustle MA© National Convention 2019

A solid has a circular base with radius 4. Crosssections perpendicular to the base are in the shape of a regular hexagon such that one side of the hexagon lies on the circular base. Find the volume of the solid.

#15 Calculus – Hustle MA© National Convention 2019

A solid has a circular base with radius 4. Crosssections perpendicular to the base are in the shape of a regular hexagon such that one side of the hexagon lies on the circular base. Find the volume of the solid.

Answer	:		
--------	---	--	--

Round 1 2 3 4 5

Answer : _____

#16 Calculus – Hustle MA© National Convention 2019

A company can manufacture a maximum of 500 widgets per day. If the profit function for manufacturing *x* widgets on any day is given by

 $P(x) = 5000 + 2160x + 177x^2 - \frac{1}{3}x^3$, find the

number of widgets that should be manufactured to maximize the company's profit.

#16 Calculus – Hustle MA© National Convention 2019

A company can manufacture a maximum of 500 widgets per day. If the profit function for manufacturing *x* widgets on any day is given by

$$P(x) = 5000 + 2160x + 177x^2 - \frac{1}{3}x^3$$
, find the

number of widgets that should be manufactured to maximize the company's profit.

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#16 Calculus – Hustle MA© National Convention 2019

A company can manufacture a maximum of 500 widgets per day. If the profit function for manufacturing *x* widgets on any day is given by

$$P(x) = 5000 + 2160x + 177x^2 - \frac{1}{3}x^3$$
, find the

number of widgets that should be manufactured to maximize the company's profit.

#16 Calculus – Hustle MA© National Convention 2019

A company can manufacture a maximum of 500 widgets per day. If the profit function for manufacturing *x* widgets on any day is given by

$$P(x) = 5000 + 2160x + 177x^2 - \frac{1}{3}x^3$$
, find the

number of widgets that should be manufactured to maximize the company's profit.

Answer :						-		Answer :									
Round	1	2	3	4	5						R	ound	1	2	3	4	5

#17 Calculus – Hustle MAO National Convention 2019

Suppose you want to find the real zero of the function $f(x) = x^3 + x - 3$, so you use Newton's Method with an initial guess of $x_0 = 1$. Find the first approximation x_1 generated by Newton's Method under these conditions, written as a decimal.

#17 Calculus – Hustle MAO National Convention 2019

Suppose you want to find the real zero of the function $f(x) = x^3 + x - 3$, so you use Newton's Method with an initial guess of $x_0 = 1$. Find the first approximation x_1 generated by Newton's Method under these conditions, written as a decimal.

Answer	:	
--------	---	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#17 Calculus – Hustle MAO National Convention 2019

Suppose you want to find the real zero of the function $f(x) = x^3 + x - 3$, so you use Newton's Method with an initial guess of $x_0 = 1$. Find the first approximation x_1 generated by Newton's Method under these conditions, written as a decimal.

#17 Calculus – Hustle MA® National Convention 2019

Suppose you want to find the real zero of the function $f(x) = x^3 + x - 3$, so you use Newton's Method with an initial guess of $x_0 = 1$. Find the first approximation x_1 generated by Newton's Method under these conditions, written as a decimal.

Answer :					Answer :																					
		-	-		_											_					_	_	-	-	_	_
Round	1	2	3	4	5											R	DU	nd		1	- 2		3	4		5

#18 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $\frac{dy}{dx} = 2xy, y(0) = 1$.

#18 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $\frac{dy}{dx} = 2xy, y(0) = 1$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#18 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $\frac{dy}{dx} = 2xy, y(0) = 1$.

#18 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $\frac{dy}{dx} = 2xy$, y(0) = 1.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#19 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $x^2 \frac{dy}{dx} + 2xy = e^x$, y(1) = e.

#19 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $x^2 \frac{dy}{dx} + 2xy = e^x$, y(1) = e.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#19 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $x^2 \frac{dy}{dx} + 2xy = e^x$, y(1) = e.

#19 Calculus – Hustle MA© National Convention 2019

Find the solution, written in y = f(x) form, to the initial value problem $x^2 \frac{dy}{dx} + 2xy = e^x$, y(1) = e.

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

#20 Calculus – Hustle MA© National Convention 2019

Find the average value of the function $f(x) = 6x^2 - 4x + 3$ on the interval [1,3].

#20 Calculus – Hustle MA© National Convention 2019

Find the average value of the function $f(x) = 6x^2 - 4x + 3$ on the interval [1,3].

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#20 Calculus – Hustle MA© National Convention 2019

Find the average value of the function $f(x) = 6x^2 - 4x + 3$ on the interval [1,3].

#20 Calculus – Hustle MA© National Convention 2019

Find the average value of the function $f(x) = 6x^2 - 4x + 3$ on the interval [1,3].

Answer : _____

Round 1 2 3 4 5

Answer : _____

#21 Calculus – Hustle MA© National Convention 2019

Use Euler's Method with a step size of h = 0.2 to approximate y(1.4) for the initial value problem y'=2x+3y, y(1)=1. Write your answer as a decimal.

#21 Calculus – Hustle MA© National Convention 2019

Use Euler's Method with a step size of h = 0.2 to approximate y(1.4) for the initial value problem y'=2x+3y, y(1)=1. Write your answer as a decimal.

Answer	:	
--------	---	--

Round 1 2 3 4 5

decimal.

Answer : _____

Round 1 2 3 4 5

#21 Calculus – Hustle MA© National Convention 2019

Use Euler's Method with a step size of h = 0.2 to approximate y(1.4) for the initial value problem y' = 2x + 3y, y(1) = 1. Write your answer as a #21 Calculus - Hustle MA© National Convention 2019

Use Euler's Method with a step size of h = 0.2 to approximate y(1.4) for the initial value problem y' = 2x + 3y, y(1) = 1. Write your answer as a decimal.

Answer :	·
----------	---

Round 1 2 3 4 5

Answer : _____

#22 Calculus – Hustle MA© National Convention 2019

Evaluate: $\sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!}$

#22 Calculus – Hustle MA® National Convention 2019

Evaluate:
$$\sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!}$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#22 Calculus – Hustle MA© National Convention 2019

Evaluate: $\sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!}$

#22 Calculus – Hustle MA© National Convention 2019

Evaluate:
$$\sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!}$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#23 Calculus – Hustle MA© National Convention 2019

Find the radius of convergence for the power series representation of the function $f(x) = \arctan x$ centered at a = 0.

#23 Calculus – Hustle MA© National Convention 2019

Find the radius of convergence for the power series representation of the function $f(x) = \arctan x$ centered at a = 0.

Answer	:
--------	---

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#23 Calculus – Hustle MA© National Convention 2019

Find the radius of convergence for the power series representation of the function $f(x) = \arctan x$ centered at a = 0.

#23 Calculus – Hustle MA© National Convention 2019

Find the radius of convergence for the power series representation of the function $f(x) = \arctan x$ centered at a = 0.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#24 Calculus – Hustle MA© National Convention 2019

Find the third non-zero term of the Taylor series for $f(x) = \ln(1-x)$ centered at a = 0, where terms are written in increasing order of power of x.

#24 Calculus – Hustle MA© National Convention 2019

Find the third non-zero term of the Taylor series for $f(x) = \ln(1-x)$ centered at a = 0, where terms are written in increasing order of power of x.

Answer :	_
----------	---

Round 1 2 3 4 5

#24 Calculus – Hustle MA© National Convention 2019

Find the third non-zero term of the Taylor series for $f(x) = \ln(1-x)$ centered at a = 0, where terms are written in increasing order of power of x.

Answer : _____

Round 1 2 3 4 5

#24 Calculus – Hustle MA© National Convention 2019

Find the third non-zero term of the Taylor series for $f(x) = \ln(1-x)$ centered at a = 0, where terms are written in increasing order of power of x.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#25 Calculus – Hustle MA© National Convention 2019

If f is a twice-differentiable function on all real numbers such that f(0)=1, f'(0)=1, and f''(0)=2, evaluate $\lim_{x\to 0} \frac{f(x)-f'(x)}{f'(x)-1}$.

#25 Calculus – Hustle MA© National Convention 2019

If *f* is a twice-differentiable function on all real numbers such that f(0)=1, f'(0)=1, and f''(0)=2, evaluate $\lim_{x\to 0} \frac{f(x)-f'(x)}{f'(x)-1}$.

Round 1 2 3 4 5

#25 Calculus – Hustle MA© National Convention 2019

If f is a twice-differentiable function on all real numbers such that f(0)=1, f'(0)=1, and

$$f''(0) = 2$$
, evaluate $\lim_{x \to 0} \frac{f(x) - f'(x)}{f'(x) - 1}$.

Answer : _____

Round 1 2 3 4 5

#25 Calculus – Hustle MA© National Convention 2019

If f is a twice-differentiable function on all real numbers such that f(0)=1, f'(0)=1, and

$$f''(0) = 2$$
, evaluate $\lim_{x \to 0} \frac{f(x) - f'(x)}{f'(x) - 1}$.

Answer : _____

Round 1 2 3 4 5