For all questions below, the answer E. NOTA means "None of these answers".

- 1. \bf{B} Letting x denote the side length of each square cut from the corners. The volume of the resulting box is $V(x) = x(10 - 2x)(16 - 2x) = 4x^3 - 52x^2 + 160x$. Then $V'(x) = 12x^2 - 104x + 160 = 4(3x^2 - 26x + 40) = 4(3x - 20)(x - 2) = 0$ when $x = 20/3$ or $x = 2$. The former is outside of the domain of V so $x = 2$ is the critical value. Noting $V''(2) > 0$, a minimum occurs when $x = 2$ and $V(2) = 2(6)(12) = 144$ cubic inches.
- 2. C By symmetry, consider $\int_{-\infty}^{0} e^{2x} dx = \lim_{R \to -\infty} \int_{R}^{0} e^{2x} dx = \lim_{R \to -\infty}$ $\mathbf 1$ $\int_{R}^{0} e^{2x} dx = \lim_{R \to -\infty} \frac{1}{2} e^{2x}$ R^{c} $\alpha x = \lim_{R \to -\infty} 2^{\text{c}}$ $\big|_R$ $^0 = \frac{1}{2}$ $\frac{1}{2} - 0 = \frac{1}{2}$ 0 $\int_{-\infty}^{0} e^{2x} dx = \lim_{R \to -\infty} \int_{R}^{0} e^{2x} dx = \lim_{R \to -\infty} \frac{1}{2} e^{2x} \Big|_{R} = \frac{1}{2} - 0 = \frac{1}{2}.$ Thus, the required area is $2(1/2) = 1$.
- 3. B Let D be the diameter of the larger sphere, s the side length of the cube, and d the diameter of the smaller sphere. Then $\sqrt{3} s = D$ and $s = d$, thus $\sqrt{3}(d) = D$. Squaring both sides, $3(d^2) = D^2$, so the ratio of the squares of the diameters is 3:1. This is also the ratio of the surface areas.
- 4. C Let (x, y) be a vertex of the rectangle on the semicircle. Then the area of the rectangle is $A(x) = 2x\sqrt{32 - x^2}$. Then $A'(x) = 2\sqrt{32 - x^2} - \frac{2x^2}{\sqrt{32 - x^2}} = 0$ so $x = 4$. Testing $x = 0$ and $x = 5$ shows this is a maximum by the first derivative test. So $A(4) = 32$.
- 5. **D** $3 = 2 + 2 \sin(\theta)$ yields $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ $\frac{3h}{6}$. The desired area is then $\mathbf 1$ $\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}}((2+2\sin(\theta))^2-3^2)$ $\frac{1}{\pi}$ 6 ల $\partial d\theta = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (-5 + 8\sin(\theta) + 4\sin^2(\theta)) d\theta$ ల ഏ ల $=\frac{1}{2}$ $\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}}(-5+8\sin(\theta)+2(1-\cos(2\theta)))d\theta$ ల ഏ ల $=\frac{1}{2}$ $\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}}(-3+8\sin(\theta)-2\cos(2\theta)))d\theta$ ົ $\frac{6}{\pi}$ ల $=\frac{1}{2}$ $rac{1}{2}$ (-3θ – 8 cos(θ) – sin(2θ))| $\frac{5\pi}{2}$ ల ల $=\frac{1}{2}$ $\frac{1}{2} \left(-3 \left(\frac{5\pi}{6}\right)\right)$ $\left(\frac{5\pi}{6}\right)$ - 8 $\left(-\frac{\sqrt{3}}{2}\right)$ $\frac{\sqrt{3}}{2}$ + $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2} + 3 \left(\frac{\pi}{6} \right)$ $\binom{\pi}{6}$ + 8 $\left(\frac{\sqrt{3}}{2}\right)$ $\frac{\sqrt{3}}{2}$ + $\frac{\sqrt{3}}{2}$ $\frac{\binom{3}{2}}{2} = \frac{9\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2} - \pi$.
- 6. B Let the point on the curve be denoted by $(r, 3 r^2)$. The equation of the tangent line is $y = -2r(x - r) + 3 - r^2 = -2rx + 3 + r^2$. The intercepts of this line are $(0,3 + r^2)$ and $\left(\frac{3+r^2}{2r}, 0\right)$. The area of the triangle is $A(r) = \frac{(3+r^2)^2}{4r^2}$ $2r$, $\frac{3}{r}$ and $\frac{3}{r}$ are $\frac{3}{r}$ and $\frac{3}{r}$ are $\frac{3}{r}$ are $\frac{4r}{r}$ and $A'(r) = 0$ implies $2(3 + r^2)(2r)(4r) = 4(3 + r^2)^2$ for which $r = 1$. The minimum area is then $A(1) = 4$.
- **7.** B The volume using the disk method is $\pi \int_0^4 \left(\frac{3}{4} \right)$ $\int_0^4 \left(\left(-\frac{3}{4}x + 6 \right)^2 - 3^2 \right) dx = 48\pi.$ Also, the volume can be obtained by taking a large cone and subtracting away a similar cone and a cylinder: $\frac{1}{3}\pi(6)^2(8) - \pi(3)^2(4) - \frac{1}{3}$ $\frac{1}{3}\pi(3)^2(4) = 48\pi.$

8. B On this interval, the sine curve is greater. The desired area is $\int_{\pi}^{\frac{5\pi}{4}} (\sin(x) - \cos(x)) dx$ $\frac{1}{\pi}$

$$
= -\cos(x) - \sin(x)\Big|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = -\left(-\frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) = \frac{4}{\sqrt{2}} = 2\sqrt{2}.
$$

9. A Using the disk method, the volume is $\pi \int_{\pi}^{\frac{5\pi}{4}} ((\sin x + 1)^2 - (\cos x + 1)^2)$ $\frac{1}{\pi}$ ర dx

10. D The region formed is the interior of a square whose diagonal is length 12. The area is then $\frac{1}{2}(12)(12) = 72$ square units.

- 11. A Using shells, the required volume is $2\pi \int_{-1}^{0} (1 x)e^{-x} dx$. Using integration by parts, let $u = 1 - x$, $du = -dx$ and $dv = e^{-x} dx$, $v = -e^{-x}$. This yields, $2\pi(-(1-x)e^{-x})\Big|_{-1}^{0} - 2\pi \int_{-1}^{0} e^{-x} dx = 2\pi(-1+2e) + 2\pi(1-e) = 2\pi e.$
- 12. A The actual area is $\int_0^2 \frac{z}{(x+1)(z+1)} dz$ $\int_0^2 \frac{2}{(x+1)(x+3)} dx = \int_0^2 \frac{1}{x+3} dx$ $\frac{1}{x+1} - \frac{1}{x+1}$ $\int_0^2 \frac{1}{x+1} - \frac{1}{x+3} dx$ using partial fraction decomposition. This equals $ln(3) - ln(1) - ln(5) + ln(3) = 2 ln(3) - ln(5) = ln(\frac{9}{5})$ $\frac{9}{5}$).

13. B Let x and y be the two lengths that form the perimeter such that $x + y = L$. Then the two side lengths are $\frac{x}{4}$ and $\frac{y}{4}$ and the sum of squares of areas is $A = \left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{4}\right)^2$ $\left(\frac{y}{4}\right)^2$. Substituting $y = L - x$, we have $A(x) = \left(\frac{x}{A}\right)^2$ $\left(\frac{x}{4}\right)^2 + \left(\frac{L-x}{4}\right)^2$ $\left(\frac{-x}{4}\right)^2$. The derivative is $A'(x) = \frac{x}{2}$ $rac{x}{2}$ $\left(\frac{1}{4}\right)$ $\frac{1}{4}$ + $\frac{L-x}{2}$ $\frac{-x}{2} \left(-\frac{1}{4} \right)$ $\left(\frac{1}{4}\right) = \frac{x}{4}$ $\frac{x}{4} - \frac{L}{8}$ $\frac{L}{8}$ = 0 when $x = \frac{L}{2}$ $\frac{L}{2}$. Since $A''(x) = \frac{1}{4}$ $\frac{1}{4}$ > 0 the value $x=\frac{L}{2}$ $\frac{L}{2}$ will create a minimum. Thus, $A\left(\frac{L}{2}\right)$ $\frac{L}{2}$) = 2 $\left(\frac{L}{8}\right)$ $\left(\frac{L}{8}\right)^2 = \frac{L^2}{32}$ $rac{L}{32}$.

14. B We find $\Delta x = \frac{\pi}{4}$, $f(0) = 0$, $f\left(\frac{\pi}{4}\right)$ $\frac{\pi}{4}$ = $\frac{1}{2}$ $\frac{1}{2}$, $f\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right) = 1, f\left(\frac{3\pi}{4}\right)$ $\left(\frac{3\pi}{4}\right) = \frac{1}{2}$ $\frac{1}{2}$, $f(\pi) = 0$. The approximation of the area is π ర $\frac{1}{2}$ $\left(0+2\left(\frac{1}{2}\right)\right)$ $\binom{1}{2}$ + 2(1) + 2($\frac{1}{2}$) $\binom{1}{2} + 0 = \frac{\pi}{2}$ $\frac{\pi}{2}$. Interestingly, this is the exact area of the region!

15. B A regular octahedron is composed of two square pyramids. By drawing in a diagonal of the base and a height of one pyramid, we see that half the diagonal is of length $3\sqrt{2}$ and thus the height is also $3\sqrt{2}$ using a 45-45-90 triangle. The volume of the octahedron is then $2 \cdot \frac{1}{3} \cdot (6)^2 \cdot 3\sqrt{2} = 72\sqrt{2}$.

- 16. C Each of the eight faces is an equilateral triangle of side length 6. The area of one of these faces is $\frac{\sqrt{3}}{4}(6)^2 = 9\sqrt{3}$. Multiplying by 8, the surface area is 72 $\sqrt{3}$.
- 17. **D** The area of R is $\int_0^2 x^3 dx = \frac{1}{4}(2)^4 = 4$. Thus, $\int_0^a x^3 dx = 2$ and so $\frac{a^4}{4}$ $\frac{a^4}{4} = 2$ and Hence $a^4 = 8$ so $a = 8^{\frac{1}{4}} = (2^3)^{1/4} = 2^{\frac{3}{4}}$.
- **18. B** The area bounded by a polar curve is $\frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta$. Here, $r^2 = 9\cos(2\theta)$. Since one solution to $9 \cos(2\theta) = 0$ is $\theta = \frac{\pi}{4}$, we can integrate on $[0, \frac{\pi}{4}]$ and multiply the answer by 4: $4(1/2)\int_{0}^{\frac{\pi}{4}} 9\cos(2\theta) d\theta = 18 \int_{0}^{\frac{\pi}{4}} \cos(2\theta) d\theta$. $\frac{\pi}{4}$ 9cos(2 θ) $d\theta = 18 \int_0^{\frac{\pi}{4}} \cos(2\theta) d\theta$. $\int_0^{\overline{4}} 9\cos(2\theta) d\theta = 18 \int_0^{\overline{4}} \cos(2\theta) d\theta$. Note the graph repeats after $\theta = \pi$.
- 19. B Let A be the area of the largest square, S. Each shaded square's area is $\frac{1}{4}$ the previous, so the total shaded area is $\frac{A}{4} \left(1 + \left(\frac{1}{4} \right)$ $\frac{1}{4}$ + $\left(\frac{1}{4}\right)$ $\left(\frac{1}{4}\right)^2 + \cdots \right) = \frac{\frac{A}{4}}{1 - \cdots}$ $rac{4}{1-\frac{1}{4}}$ $=\frac{A}{2}$ $\frac{A}{3}$. Thus, 1/3 of the area of the largest square is shaded.
- 20. D The sides of the square are $2y = 2\sqrt{r^2 x^2}$ and the area of the square is $4(r^2 - x^2)$. Hence the volume is $\int_{-r}^{r} 4(r^2 - x^2) dx = 8(r^2x - \frac{x^3}{r^2})$ $\frac{1}{3}$) $\Big|_0$ r $=\frac{16r^3}{2}$ ଷ r $\left.\int_{-r}^{r} 4(r^2 - x^2) dx = 8(r^2x - \frac{x}{3})\right|_{0} = \frac{16r}{3}.$
- 21. D We consider all points exterior to the square of distance 1 from the nearest point on the square. This forms the set T of points as shown. The enclosed area is then $(3)(3) + 4(1)(3) + 4 \cdot \frac{\pi}{4}(1)^2 = 21 + \pi.$

22. C The surface area of the original $3x3x3$ cube is $6(3)(3) = 54$. Since the new cube covers one of the faces of a 1x1x1 cube, the original area goes down to 53. Of the six faces of the 1x1x1 cube, one is obscured so of its faces, only 5 contribute. Thus, the new surface area is $53 + 5 = 58$.

- 23. E By symmetry, consider $\int_0^k |\cos(x)| dx = 3$. We see that $\int_0^{\frac{\pi}{2}} \cos(x) dx = 1$. $\int_0^2 \cos(x) dx = 1$. This means that $\int_{0}^{\frac{3\pi}{2}} |\cos(x)| dx = 3$ so $\int_{0}^{\frac{3\pi}{2}} |\cos(x)| dx = 3$ so $k = \frac{3\pi}{2}$. $\frac{3\pi}{2}$.
- 24. C $2 \int_0^6 (f(x) + 2) dx = 2 \int_0^6 f(x) dx + 2 \int_0^6 2$ $\int_0^6 f(x)dx + 2\int_0^6 2 dx = 1$ $\int_0^6 f(x)dx + 2\int_0^6 2 dx = 2\left(\frac{1}{2}\right)$ $\frac{1}{2}(2)(6) - \frac{1}{2}$ $\frac{1}{2}\pi(2)^2\bigg)+2(12).$ This simplifies to $36 - 4\pi$.
- 25. B Letting x be the vertex angle, the area is $\frac{1}{2}(8)(8) \sin x = 32 \sin x$. The maximum is 32 when $x = 90$ degrees.
- **26. B** Writing $A = w l$, we see $\frac{dA}{dt}$ $\frac{dA}{dt} = \frac{dw}{dt}$ $\frac{dw}{dt}$ $l + \frac{dl}{dt}$ $\frac{dl}{dt}w = (2)(8) - (4)(5) = -4cm^2/sec$ This means the area is decreasing at 4 square cm per second.
- 27. A Letting x be a side length of the base and h the height of the prism, we have $x^2 h = V$ so $h = \frac{V}{x^2}$. The surface area $S = 4xh + 2x^2$ so $S(x) = \frac{4V}{x}$ $\frac{dV}{dx} + 2x^2$. Then $S'(x) = 4x - \frac{4V}{x^2}$ $\frac{4V}{x^2} = 0$ so $x = V^{\frac{1}{3}}$. This is a minimum since $S''(x) = 4 + \frac{8v}{x^3} > 0$ for $x = V^{\frac{1}{3}}$. The surface area is then $S(V^{\frac{1}{3}}) = \frac{4V}{V^{\frac{1}{2}}}$ $\frac{4V}{V^{\frac{1}{3}}} + 2V^{\frac{2}{3}}$ య or simply $6V^{\frac{2}{3}}$.

28. D We are given
$$
\frac{dV}{dt} = -\pi
$$
. Differentiating $V = \frac{4}{3}\pi r^3$, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$.
Thus, $-\pi = 4\pi r^2 \frac{dr}{dt}$ and when $r = 1$, we have $\frac{dr}{dt} = -\frac{1}{4} \frac{ft}{min}$.

- 29. C The surface area is $2\pi \int_{-4}^{4} y ds$ where $ds = \sqrt{1 + (y')^2} dx$. Here, $ds = \sqrt{1 + (\frac{-x}{\sqrt{16}})}$ $\int \frac{-x}{\sqrt{16-x^2}} dx = \frac{4}{\sqrt{16-x^2}} dx$. Thus, $2\pi \int_{-4}^{4} \sqrt{16-x^2} \frac{4}{\sqrt{16-x^2}} dx =$ $8\pi \int_{-4}^{4} dx = 8\pi (4 - 4) = 64\pi$. Alternatively, this is just the surface area of a sphere of radius 4, which has area $4\pi(4)^2 = 64\pi$.
- 30. $\degree{\text{C}}$ One way to find this volume is the absolute value of the determinant of the matrix with the given vectors as columns: $3 \t2 \t1$ -1 3 0. $2 \quad 2 \quad 5$ อ. This determinant equals $3(15-0) - 2(-5-0) + 1(-2-6) = 45 + 10 - 8 = 47.$