1. B The positive section of $f(x)$ consists of two segments, connection $(0, 0)$ to $(3, 3)$ to (4, 0). The area under any probability density function must be 1. However, the area under the positive section of $f(x)$ is $\frac{1}{2} \cdot 4 \cdot 3 = 6$, so $a = \frac{1}{6}$ $\frac{1}{6}$.

2. C
$$
E(x) = \int_0^4 xp(x) dx = \frac{1}{6} \left(\int_0^3 x^2 dx + \int_3^4 x(12 - 3x) dx \right)
$$

= $\frac{1}{6} \left(\left[\frac{1}{3} x^3 \right]_0^3 + \left[\frac{12}{2} \right]^2 - \frac{3x^3}{3} \right]_3^4 = \frac{1}{6} \left(9 + (96 - 64) - (54 - 27) \right) = \frac{7}{3}$

- 3. $E = \frac{10!}{2 \times 10!}$ $rac{10!}{2!2!} = \frac{11!}{44}$ $\frac{11!}{44}$, so $n = 44$.
- 4. D Pretending the word consist of 4 distinct consonants and 2 distinct vowels, the number of arrangements would be $4 \cdot 3 \cdot 4!$. However, with 2 each of Z and G, there are four copies of each arrangement. So the number of distinguishable ones is 72.
- 5. C If the point is selected above $y = x^2$, no tangent line can be drawn. If the point is selected below, two tangent lines can be drawn. The region has an area of 16. With an area of 2 $\int_0^2 x^2$ $\int_0^2 x^2 dx = 2 \left(\frac{x^3}{3} \right)$ $\frac{1}{3}$ _{0.} $2¹$ $= \frac{16}{3}$ $\frac{16}{3}$. So the expected value is $0 \cdot \frac{2}{3} + 2 \cdot \frac{1}{3} = \frac{2}{3}$. $\frac{2}{3}$.
- 6. D The sum of coefficients is $4^{24} = 2^{48}$. So as long as $b > 0$ and $b/48$, there is a corresponding value for a . $48 = 2^4 \cdot 3$, so it has 10 factors, only two of which are odd. If b is even, there are two values of a (positive and negative), and if b is odd, there is only one. So there are a total of $2 \cdot 8 + 1 \cdot 2 = 18$ ordered pairs.
- 7. E There are a few ways to create the constant term, arranged in decreasing powers of 1: $1^{10} + \frac{10!}{1!7!7}$ $\frac{10!}{1!7!2!} (x^2)^1 (1)^7 \left(\frac{1}{x}\right)$ $\left(\frac{1}{x}\right)^2 + \frac{10!}{2!4!4}$ $\frac{10!}{2!4!4!} (x^2)^2 (1)^4 \left(\frac{1}{x}\right)$ $\left(\frac{1}{x}\right)^4 + \frac{10!}{3!1!6}$ $rac{10!}{3!1!6!}$ $(x^2)^3(1)^1\left(\frac{1}{x}\right)$ $\left(\frac{1}{x}\right)^6 = 4351.$
- 8. C An integer is relatively prime to 50 but not 36 if it is a multiple of 3 but not of 2 or 5. So of 6000 integers, $\frac{1}{3}$ of which are multiples of 3, $\frac{1}{2}$ of which are not multiples of 2, and $\frac{4}{5}$ of which are not multiples of 5. In total, there are 6000 $\left(\frac{1}{3}\right)$ $\binom{1}{3} \binom{4}{2} \binom{4}{5} = 800$ numbers satisfying the condition.

9. B Consider the gaps between consecutive vertices. For instance, a gap of 1 means the two vertices are adjacent, where a gap of 6 means the two points are diametrically opposed. To count the number of incongruent quadrilaterals, we need to consider all partitions of 12 into 4 positive integers. The partitions are: 9111, 8211, 7311, 7221, 6411, 6321, 6222, 5511, 5421, 5331, 5322, 4431, 4422, 4332, 3333. If a partition is of the form AAAA or AAAB, there is only one possible quadrilateral. There are 3 such partitions, for 3 quadrilaterals. If a partition is of the form AABB or AABC, there are 2 possible quadrilaterals, where the two sides of gap A can be adjacent or opposite. There are 10 such partitions, for 20 quadrilaterals. If a partition is of the form ABCD, there are 3 possible quadrilaterals, where the opposite of A can be B, C, or D. There are 2 such partitions, for a total of 6 quadrilaterals. In total, there are 29 possible quadrilaterals.

10. D The probability is
$$
\frac{3 \cdot 4 \cdot 5}{\frac{12}{3}} = \frac{3}{11}
$$
.

- 11. B As θ ranges from 0 to $2\pi r = 0$ when $\theta = \frac{2\pi}{3}$ $\frac{2\pi}{3}, \frac{4\pi}{3}$ $\frac{m}{3}$. The probability is the area of the inner loop over the area of the outer loop. The area of the outer loop is $2 \cdot \frac{1}{2} \int_0^{\frac{2\pi}{3}} (1 + 2 \cos \theta)^2$ $\int_{0}^{\frac{2\pi}{3}} (1 + 2\cos\theta)^2 d\theta = \int_{0}^{\frac{2\pi}{3}} (1 + 4\cos\theta + 4\cos^2\theta)$ $\int_0^{\sqrt{3}} (1 + 4 \cos \theta + 4 \cos^2 \theta) d\theta$ $= \int_0^{\frac{2\pi}{3}} (1 + 4 \cos \theta + 2(\cos 2\theta + 1))$ $\int_{0}^{\frac{2\pi}{3}} (1 + 4\cos\theta + 2(\cos 2\theta + 1)) d\theta = [3\theta + 4\sin\theta + \sin 2\theta]_{0}^{\frac{2\pi}{3}} = 2\pi + \frac{3\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ The area of the inner loop is $2 \cdot \frac{1}{2} \int_{\frac{2\pi}{3}}^{\pi} (1 + 2 \cos \theta)^2$ $\frac{\pi}{a^2}(1+2\cos\theta)^2 d\theta = [3\theta+4\sin\theta+\sin 2\theta]_{\frac{2\pi}{3}}^{\frac{\pi}{2}}$ య $\frac{\pi}{2\pi} = \pi - \frac{3\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ Finally, the probability is $\frac{2\pi-3\sqrt{3}}{4\pi+3\sqrt{3}}$
- 12. C There are 13 ways to select the value of the three of a kind, and 4 ways to choose their suits. There are 12 ways to select the value of the pair, and 6 ways to choose their suits. There are $13 \cdot 4 \cdot 12 \cdot 6 = 3744$ different full houses.
- 13. E The probability of drawing a pair of matching socks is $\frac{a(a-1)+b(b-1)}{(a+b)(a+b-1)} = \frac{1}{2}$ $\frac{1}{2}$. Expanding to get $2a^2 - 2a + 2b^2 - 2b = a^2 + 2ab + b^2 - a - b$, Collecting to get $a^2 - 2ab + b^2 - a - b = 0$, or $(a - b)^2 = a + b$. In other words, $a + b$ must be a perfect square. Let $n = a - b$, we can consider the system $a + b = n^2$, $a - b = n$, which has solutions $a = \frac{n^2 + n}{n}$ $\frac{n^2+n}{2}$, $b=\frac{n^2-n}{2}$. $\frac{-n}{2}$. Since *a*, *b* are even integers, it follows that n must be a multiple of 4. The third smallest possible value of *n* then is 12, making $a + b = 144$.
- 14. B Consider any interval $[a, b]$, if a value of x is selected at random, then the expected height is $\frac{1}{b-a} \int_a^b x^3$ $\int_a^b x^3 dx$, and the corresponding rectangular approximation for the interval would have an expected area of $\int_a^b x^3$ $\int_a^b x^3 dx$. In other words, a Riemann sum approximation done in this manner simply has expected area of $\int_0^4 x^3$ $\int_0^4 x^3 dx = 64.$
- 15. D There are 40 students taking at least one of the two classes, and 25 + 30 − 40 = 15 students taking both classes. So the probability is $\frac{15}{40} = \frac{3}{8}$ $\frac{5}{8}$.
- 16. B Consider consecutive terms in the expansion, they would look like $\binom{31}{1}$ $\binom{n}{n} x^n 2^{31-n}$ and $\binom{31}{n-1} x^{n-1} 2^{31-n+1}$. So the ratio of coefficients is $\frac{\binom{31}{n-1} 2^{31-n}}{\binom{31}{n} 2^{31-n}}$ $\frac{(n-1)^{2^{31-n}}}{(31)2^{31-n}} = \frac{2n}{32-n}$ simply need to determine the last value of *n* such that $\frac{\binom{n}{2}}{32-n} > 1$, indicating an $rac{2n}{32-n}$. We increase in coefficient. This occurs at $n = 11$, indicating an increasing exponent from x^{11} term to x^{10} term, and x^{10} term has the greatest coefficient.
- 17. C Let $\frac{DE}{DC} = x$, then x ranges from 0 to 1, as E moves from D to C. $ΔDEN ~ ∞ ΔBAN, so ^{DN} _{PN}$ $rac{DN}{BN} = x$, and $rac{MN}{BD} =$ $1+x$ $\frac{1}{2}$ - x $\frac{2}{2-x} = \frac{1-x}{2+2x}$ $\frac{1-x}{2+2x}$. Since $\triangle MAN$ and $\triangle BAD$ share a height from vertex A , the ratio of their areas is simply a ratio of the bases MN and BD. $[BAD] = \frac{1}{2}$ $\frac{1}{2}[ABCD] = 60$, so $[MAN] = 30\left(\frac{1-x}{1+x}\right)$. The expected area is then 30 $\int_0^1 \frac{1-x}{1+x}$ $1+x$ $\mathbf 1$ $\int_0^1 \frac{1-x}{1+x} dx = 30 \int_0^1 \left(-1 + \frac{2}{1+x} \right)$ $\int_{0}^{1} \left(-1 + \frac{z}{1+x} \right) dx$ $= 30[-x + 2 \ln(1 + x)]_0^1 = 30(2 \ln 2 - 1)$
- 18. A $\frac{7!}{2!}$ $\frac{1}{2!3!2!}$ = 210
- 19. E In general, the graph is isomorphic to the vertices and edges of an octahedron, which may be a helpful way of visualizing the paths. For this question in particular, the first edge must lead from A to one of B, C, E, F. All four of those vertices are in equivalent positions with respect to A and D, so without loss of generality, let the first edge be AB . From B, the next vertex can be D, C, F . D ends the path. We can consider traveling to C , F as traveling clockwise or counterclockwise around rectangle $BCEF$, and this can end after 1, 2, or 3 additional vertices to B by traveling to D. So there are 7 total paths from B to D, which means $4 \cdot 7 = 28$ paths from A to D .
- 20. C We will consider the paths of length 4 from A to D by whether they visit A or D in the middle of the path. There are a few cases: $AXYZD$, $AXAYD$, $AXDYD$, where X, Y, Z each represent one of B, C, E, F, not necessarily distinct. In the first case, there are 4 ways to select X , and 2 each to select Y , Z . In the other cases, there are 4 ways each to select X and Y. This makes for a total of 48 paths.
- 21. D Without the loss of generality, we will consider the first path as AB . Then we can compute the number of circuits by when vertex D is reached. The cases are $ABDXYZA, ABXDYZA, ABXYDZA,$ where X, Y, Z each represent one of C, E, F. This time, they do have to be distinct. Note that D cannot be the $6th$ vertex reached, as there would be no path leading back to A . In the first case, there are 2 ways to select XYZ , specifically CEF , FEC . In the second case, there are 2 ways to select X , and 2 ways to select YZ . In the third case, there are 2 ways to select XY , and 1 way to select Z. In total, there are 8 circuits starting with AB , and 24 ways to select equivalence of AB , for 192 circuits.
- 22. C By Pappus's Theorem, the $V = 2\pi RA$, where R is the distance from centroid of the region to the axis of revolution, and A is the area of the region. Thus the expected volume is $\int_{-6}^{0} 2\pi (x_0 - x) A \cdot \frac{1}{6}$ $\frac{1}{6}$ dx, where x_0 is the x-coordinate of the centroid. Since every quantity except $(x_0 - x)$ is a constant in the integral, the expected volume can be rewritten as $2\pi A \int_{-6}^{0} (x_0 - x) \cdot \frac{1}{6}$ 6 $\int_{-6}^{0} (x_0 - x) \cdot \frac{1}{6} dx$. $\int_{-6}^{0} (x_0 - x) \cdot \frac{1}{6}$ 6 $\int_{-6}^{0} (x_0 - x) \cdot \frac{1}{6} dx$ is the expected distance from centroid to axis of revolution, which occurs when the axis is located at $x = -3$. Thus it is sufficient to compute the volume of revolution when the axis is at $x = -3$, which is

$$
2\pi \int_0^1 (x+3) \left(x^{\frac{1}{3}} - x^2\right) dx = 2\pi \int_0^1 \left(-x^3 - 3x^2 + x^{\frac{4}{3}} + 3x^{\frac{1}{3}}\right) dx = \frac{20\pi}{7}
$$

23. D First, we need to determine the point on the graph where the tangent line has an xintercept of 1. Call that point $\left(x,\frac{2}{3}\right)$ $\frac{2}{3}x^{\frac{3}{2}}$, the slope of the tangent can be computed in two ways $-f'(x) = x^{\frac{1}{2}}$, and slope formula to (1, 0). Thus $\frac{2}{3}$ $\frac{2}{3}x^{\frac{3}{2}}-0$ $\frac{x^{\overline{2}-0}}{x-1} = x^{\frac{1}{2}}$. Solving to get $x = 0, 3$. When $x > 3$, the x-intercept will be greater than 1. However, the point is chosen on the curve, so the probability is the ratio of the arclength of the graph from 3 to 8 to the arclength from 0 to 8. Arclength from 3 to 8 can is \int_{3}^{8} , $\left(1 + (f'(x))\right)^2$ $\int_3^8 \sqrt{1 + (f'(x))^2} dx = \int_3^8 \sqrt{1 + x^2} dx$ $\int_3^8 \sqrt{1+x} \, dx = \left[\frac{2}{3}\right]$ $\frac{2}{3}(1+x)^{\frac{3}{2}}\Big]_3^8$ ଼ $=\frac{2}{3}$ $\frac{2}{3}(27-8) = \frac{38}{3}$ $\frac{3}{3}$. Similarly, the arclength from 0 to 8 is $\frac{2}{3}(27-1) = \frac{52}{3}$. $\frac{52}{3}$. So the probability is $\frac{38}{52} = \frac{19}{26}$ $\frac{19}{26}$.

- 24. B There are 24 permutations each starting with A and E. Then there are 6 each starting with GA and GE. The $60th$ permutation is the last one starting with GE, which is GEVSA.
- 25. C For $f(x) = 0$ to have no solution, a is necessarily 0. Next, $bx^2 + cx + d$ must have a negative discriminant, or $c^2 - 4bd < 0$. This cannot occur unless b, d are both positive or both negative. It is then simple enough to consider the 3 cases of 4bd. 4*bd* can be 4, 8, or 16, with probabilities of $\frac{2}{25}$, $\frac{4}{25}$ $\frac{4}{25}$, and $\frac{2}{25}$ respectively. When $4bd =$ 4, $c \neq \pm 2$, or there would be a real solution. So $bx^2 + cx + d$ has no real solution with probability $\frac{2}{25} \cdot \frac{3}{5}$ $\frac{3}{5} + \frac{6}{25}$ $\frac{6}{25} = \frac{36}{125}$ $\frac{36}{125}$. Add in the restriction of $a = 0$ for a probability of ଷ $\frac{36}{625}$. However, the constant functions that slip through as they technically have a discriminant of 0 when treated as a quadratic. Four of the five constant functions do not have a solution, making the final probability $\frac{40}{625} = \frac{8}{12!}$ $\frac{6}{125}$.
- 26. C It is easier to compute this by complement. There are 4^6 6-letter sequences, of those $4 \cdot 3^5$ do not contain any pair of consecutive letters that match. $4^6 - 4 \cdot 3^5 =$ $4(1024 - 243) = 3124.$
- 27. A Call the 3 points chosen A, B, C , and place the circle centered at the origin, which we will call O . Without loss of generality, place A at $(1, 0)$ by rotating the figure. Place \hat{B} in quadrants I or II by reflecting the figure, if necessary. \hat{C} has no restrictions when selected. Draw diameters through A and B. For $\triangle ABC$ to be acute, C must be on the sector opposite of minor arc AB . Otherwise, one of the three central angles is greater than π , causing the corresponding inscribed angle to be obtuse. Let's call ∠ $AOB = x$, then x is selected at random on [0, π]. Let y be ∠ AOC , but measured clockwise, rather than strictly the smallest angle between OA and OC . Then y is selected at random on [0, 2π]. $\triangle ABC$ is acute if $\pi - x < y < \pi$. We can now compute the probability geometrically. x, y are selected from a rectangle of dimensions π by 2π . ΔABC is acute if the point is below $y = \pi$ and above $y = \pi - x$, which compose of $\frac{1}{4}$ of the rectangle.
- 28. C The area of the valid region described in #27 has an area of $\frac{\pi^2}{2}$ $\frac{1}{2}$, so each point within has a density of $\frac{2}{\pi^2}$. Next, we can compute the area of $\triangle ABC$ in terms of x, y. $[AOB] = \frac{1}{2}$ $\frac{1}{2}$ sin x, $[ACC] = \frac{1}{2}$ $\frac{1}{2}$ sin y, and $[BOC] = \frac{1}{2}$ $\frac{1}{2}\sin(2\pi - x - y) = -\frac{1}{2}$ $rac{1}{2}$ sin(x + y). Therefore, $[ABC] = \frac{1}{2}$ $\frac{1}{2}(\sin x + \sin y - \sin(x + y)).$ The expected area of $\triangle ABC$ is then $\frac{2}{\pi^2} \cdot \frac{1}{2}$ $\frac{1}{2} \int_0^{\pi} \int_{\pi - x}^{\pi} (\sin x + \sin y - \sin(x + y)) dy dx$ Integrating the inner layer to get $[y \sin x - \cos y + \cos(x + y)]_{\pi-x}^{\pi}$. Working with each part: $[y \sin x]_{\pi-x}^{\pi} = \sin x (\pi - (\pi - x)) = x \sin x$ $[-\cos y]_{\pi-x}^{\pi} = -\cos \pi + \cos(\pi - x) = 1 - \cos x$ $[\cos(x+y)]_{\pi-x}^{\pi} = \cos(x+\pi) - \cos(x+\pi-x) = -\cos x + 1$

Combining and placing it back in the outer layer to get:

 $\frac{1}{\pi^2} \int_0^{\pi} (x \sin x + 2 - 2 \cos x)$ $\int_0^{\pi} (x \sin x + 2 - 2 \cos x) dx = \frac{1}{\pi^2}$ $\frac{1}{\pi^2}[-x\cos x + \sin x + 2x - 2\sin x]_0^{\pi} = \frac{3\pi}{\pi^2} = \frac{3\pi}{\pi^2}$ $\frac{3}{\pi}$.

- 29. B A randomly selected element is equally likely to be above or below the median. In each half, the expected selection is in the middle, at $\frac{1}{4}$ or $\frac{3}{4}$. $\frac{3}{4}$. Both are $\frac{1}{4}$ away from the median.
- 30. C Let the 3 elements chosen be x, y, z , each on [0, 1], so the sample space is a unit cube. Without loss of generality, let $x < y < z$. Since there are 3! =6 ordering of x, y, z, the selected case occupies a volume of $\frac{1}{6}$. We can simply treat the problem as selecting from that section, with each point (x, y, z) having a density of 6. y is the median of three, and its distance from the actual median is $y - \frac{1}{3}$ $\frac{1}{2}$. The expected distance is $6 \int_0^1 \int_x^1 \int_y^1 \left| y - \frac{1}{2} \right|$ $\int_{\nu}^{1} |y - \frac{1}{2}|$ $\int_0^1 \int_x^1 \int_y^1 \left| y - \frac{1}{2} \right| dz dy dx = 6 \int_0^1 \int_x^1 \left| y - \frac{1}{2} \right|$ $\int_{0}^{1} |y - \frac{1}{2}| (1 - y)$ $\int_0^1 \int_x^1 \left| y - \frac{1}{2} \right| (1 - y) \, dy \, dx$ To compute the next layer, it is necessary to consider whether y is above or below $\frac{1}{2}$. Consequently, we must also break down the outer layer to whether x is above or below $\frac{1}{5}$. This makes for 3 cases: \mathbf{S}^{\prime} $\int_{\frac{1}{2}}^{1} \int_{\gamma}^{1} (y - \frac{1}{2})$ $\frac{1}{x}\left(y-\frac{1}{2}\right)(1-y)$ $\int_{\frac{1}{2}}^{1} \int_{x}^{1} \left(y - \frac{1}{2} \right) (1 - y) dy$ మ $dx = \frac{1}{100}$ $rac{1}{192}$ భ

$$
\int_0^{\frac{1}{2}} \int_x^{\frac{1}{2}} \left(\frac{1}{2} - y\right) (1 - y) \, dy \, dx = \frac{1}{64}
$$
\n
$$
\int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}} \left(y - \frac{1}{2}\right) (1 - y) \, dy \, dx = \frac{1}{96}
$$

Combining to get the expected value as $6\left(\frac{1}{10}\right)$ $\frac{1}{192} + \frac{3}{192}$ $\frac{3}{192} + \frac{2}{192} = \frac{36}{192}$ $\frac{36}{192} = \frac{3}{16}$ $rac{5}{16}$.