- 1) Find f'(3) if $f(x) = x \cos(2x)$.
 - (A) $\cos(3) + 3\sin(3)$
- (B) $\cos(6) 3\sin(6)$
- (C) $\cos(6) 6\sin(6)$
- (D) $\cos(6) + 6\sin(6)$
- (E) NOTA

- 2) Find the slope of the line <u>normal</u> to $f(x) = e^{2x}$ at $x = \ln(2)$.
 - (A) 4

(B) $-\frac{1}{4}$

(C) 8

- (D) $-\frac{1}{8}$
- (E) NOTA

- 3) Find $\frac{d}{dx} \left[\frac{\sin(\pi x) + 1}{x^2 + 4} \right]_{x=1}$.
 - (A) $\frac{\pi}{5} + \frac{2}{25}$

(B) $-\frac{\pi}{5} + \frac{2}{25}$

(C) $\frac{\pi}{5} - \frac{2}{25}$

- (D) $-\frac{\pi}{5} \frac{2}{25}$
- (E) NOTA

- 4) Find $\lim_{x \to 3} \frac{x^3 3x^2 x + 3}{x^3 + x^2 9x 9}$.
 - (A) $\frac{1}{3}$

(B) $-\frac{1}{3}$

(C) $-\frac{2}{3}$

- (D) $\frac{2}{3}$
- (E) NOTA
- 5) Find the equation of the tangent line to the curve $x^3 xy^2 + 2y^4 = 8$ at the point (2,1).
 - (A) $y = -\frac{11}{4}x + \frac{9}{2}$
- (B) $y = \frac{11}{4}x \frac{9}{2}$
- (C) $y = -\frac{11}{4}x + \frac{13}{2}$
- (D) $y = \frac{11}{4}x \frac{13}{2}$ (E)
 - E) NOTA
- Approximate the area between the curve $y = x^3 + 1$ and the x-axis from x = 1 to x = 3, using the Trapezoidal Rule with four intervals of equal width.
 - (A) 16

(B) $\frac{45}{2}$

(C) 29

- (D) 45
- (E) NOTA

- 7) Evaluate: $\int_{1}^{2} \left(x^{3} + \frac{1}{x^{2}} \right) dx$
 - (A) $\frac{7}{2}$

(B) $\frac{3}{4}$

(C) $\frac{17}{4}$

- (D) 2
- (E) NOTA

- 8) Find $\int_{-3}^{3} \sqrt{9 x^2} dx$.
 - (A) 9π

(B) $\frac{9}{2}\pi$

(C) $\frac{9}{4}\pi$

- (D) $\frac{9}{8}\pi$
- (E) NOTA

- 9) Evaluate: $\int_0^1 \frac{x-1}{x^2-2x+5} dx$
 - (A) $\ln\left(\frac{2\sqrt{5}}{5}\right)$

(B) $\ln\left(\frac{4}{5}\right)$

(C) $\ln\left(\frac{\sqrt{5}}{2}\right)$

- (D) $\ln\left(\frac{2\sqrt{5}}{2}\right)$
- (E) NOTA

- 10) Evaluate: $\int_{1}^{3} \frac{1}{x^2 2x + 5} dx$
 - (A) $\frac{\pi}{2}$

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{8}$

- (D) $\frac{\pi}{16}$
- (E) NOTA

- 11) Evaluate: $\int_0^1 \frac{1}{x^2 2x 3} dx$
 - (A) $\frac{\ln(3)}{3}$

(B) $\frac{\ln(3)}{4}$

(C) $-\frac{\ln(3)}{3}$

- (D) $-\frac{\ln(3)}{4}$
- (E) NOTA

- 12) Find $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{k}{k^2+n^2}\right)$.
 - (A) ln(2)

(B) $\frac{1}{2} \ln(2)$

(C) $\ln\left(\frac{5}{2}\right)$

- (D) $\frac{1}{2} \ln \left(\frac{5}{2} \right)$ (E)
 - (E) NOTA
- 13) Find $\lim_{x \to \infty} (\sqrt{3x^2 2x + 5} \sqrt{3x^2 7x + 11})$.
 - (A) $\frac{5\sqrt{3}}{6}$

(B) $\frac{5\sqrt{3}}{3}$

(C) $-\frac{5\sqrt{3}}{6}$

- (D) $-\frac{5\sqrt{3}}{3}$
- (E) NOTA

- 14) Find $\frac{d}{dx}[x^x]$.
 - (A) x^x

- (B) $x^x \ln(x)$
- (C) $x^x(\ln(x) + 1)$
- (D) $x^{x}(\ln(x)-1)$
- (E) NOTA

- The functions $f(x) = x^2 + 1$ and $g(x) = -x^2$ share a common tangent line of positive slope. 15) What is its equation?
 - (A) $y = \frac{\sqrt{2}}{2}x + 1$

(B) $y = \frac{\sqrt{2}}{2}x + \frac{1}{2}$

(C) $v = \sqrt{2}x + 1$

- (D) $y = \sqrt{2}x + \frac{1}{2}$
- (E) **NOTA**

- Find the range of $f(x) = \frac{x}{x^6 + 1}$. 16)
 - (A) $\left[-\frac{\sqrt[6]{5}}{6}, \frac{\sqrt[6]{5}}{6}\right]$

(B) $\left[-\sqrt[6]{5}, \sqrt[6]{5}\right]$

(C) $\left[-\frac{\sqrt[6]{5^5}}{6}, \frac{\sqrt[6]{5^5}}{6} \right]$

- (D) $\left[-\sqrt[6]{5^5}, \sqrt[6]{5^5}\right]$
- (E) **NOTA**

- Evaluate: $\int_0^{\sqrt{\pi}} e^x (\cos(x^2) 2x \sin(x^2)) dx$ 17)
 - (A) $-e^{\sqrt{\pi}} 1$

(B) $e^{\sqrt{\pi}} - 1$

(C) $-e^{\sqrt{\pi}} + 1$

- (D) $e^{\sqrt{\pi}} + 1$
- (E) NOTA
- Evaluate: $\int_0^{\pi/3} \sec(x) \tan(x) \cdot \ln|\sec(x) + \tan(x)| dx$ 18)
 - (A) $2 \ln |2 + \sqrt{3}| + \sqrt{3}$
- (B) $2 \ln |2 + \sqrt{3}|$
- (C)
- $2\ln|2+\sqrt{3}|-\sqrt{3}$ (D) $\sqrt{3}\ln|2+\sqrt{3}|$
- (E) **NOTA**
- 19) From the top of a tree 30 meters tall, a monkey is pulling up a bundle of bananas attached to a rope. The bundle of bananas has a weight of 20 Newtons, and the rope has a linear density of 6 Newtons per meter. How much work (in Newton-meters) does the monkey do when pulling the bundle of bananas to the top of the tree?
 - 600 (A)

(B) 780

(C) 3,300

- (D) 6,000
- (E) **NOTA**
- For which of the following functions is the average rate of change of the function equal to the 20) average value of the function over any real interval?
 - f(x) = 2019(A)

(B) $f(x) = \sin(x)$

 $f(x) = x^2$ (C)

- (D) $f(x) = e^x$
- (E) **NOTA**

Consider the region between $f(x) = x^r$ ($r \ge 1$) and the x -axis from $x = 0$ to $x = a$. If, for any
real value of a , the y -coordinate of the centroid of this region is equal to the average value of
f(x) over the interval $(0, a)$, then what is r ?

(A) $1 - \sqrt{2}$

(B) 1

(C) $1 + \sqrt{2}$

(D) 2

(E) NOTA

22) Find
$$\frac{d^{2019}}{dx^{2019}} [x^3 \cos(x^2)] \Big|_{x=0}$$
.

(A) $\frac{2019!}{1008!}$

(B) $\frac{2019!}{1009!}$

(C) $\frac{2018!}{1008!}$

- (D) $\frac{2018!}{1009!}$
- (E) NOTA
- The finite region in the first quadrant bounded by the x- and y-axes and the curve $y = r^2 x^2$ is divided into two regions of equal area by the curve $y = ax^2$. Assume r is a non-zero real constant. Find a.
 - (A) 2

(B) 3

(C) 4

- (D) 5
- (E) NOTA
- Consider a matrix of the form $\begin{bmatrix} x & 1 & 0 \\ y^2 & y & 5 \\ x & 1 & y \end{bmatrix}$ with non-negative entries and a determinant of 12.

What is the maximum possible trace of such a matrix?

(A) 1

(B) 3

(C) 6

- (D) 9
- (E) NOTA

- 25) Evaluate for k > 0: $\int_0^\infty \frac{dx}{\cosh(x) + k \sin(x) + 1}$
 - (A) $\frac{1}{k}\ln(k)$

(B) $\frac{1}{k}\ln(k+1)$

(C) $\frac{1}{k+1}\ln(k)$

- $(D) \qquad \frac{1}{k+1} \ln(k+1)$
- (E) NOTA
- 26) Let f(x) be a continuous, differentiable function such that, for any real $a \ge 0$, $\int_1^\infty e^{-a} f(x) dx = \frac{a^2}{a^6 + 1}. \text{ Find } \int_1^\infty \frac{f(x)}{x} dx.$
 - (A) $\frac{\pi}{3}$

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{6}$

- (D) $\frac{\pi}{12}$
- (E) NOTA

27) Which of the answer choices is equivalent to the expression below?

(A) $2019x^{2018}$

(B) $2019x^{1009}$

(C) $x^{\frac{2019}{2}}$

- (D) $\sqrt{2}x^{\frac{2019}{2}}$
- (E) NOTA

Let f(x), g(x), and h(x) be differentiable functions with the following properties:

$$f'(x) = f(x) + g(x) + h(x)$$

$$g'(x) = f(x) - 2h(x)$$

$$h'(x) = 2f(x) - g(x) + h(x)$$

Further, f(0) = 0, g(0) = 3, and h(0) = -1. Find $f(\ln(2))$.

(A) $\frac{15}{16}$

(B) $\frac{7}{8}$

(C) $\frac{15}{8}$

- (D) $\frac{7}{4}$
- (E) NOTA

The point P begins at the origin, then moves in the Cartesian plane along the line $y=\frac{1}{2}x$ such that the x-coordinate of P is changing at a rate of +3 units per second. Consider the area enclosed by the locus of all points that are exactly $\frac{1}{3}$ as far away from the point P as they are from the line y=-2x. At what rate is this area changing when P=(8,4)?

(A) $\frac{81\pi\sqrt{2}}{2}$

(B) $\frac{81\pi\sqrt{2}}{4}$

(C) $\frac{9\pi\sqrt{2}}{2}$

(D) $\frac{9\pi\sqrt{2}}{4}$

(E) NOTA

- 30) Find $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{5n}$.
 - (A) e^{15}

(B) e^{5}

(C) e^{3}

- (D) $e^{5/3}$
- (E) NOTA