For all questions, answer choice E. "NOTA" stands for "None of the Above", "DNE" stands for "Does Not Exist", and "GLHF!" stands for "Good Luck and Have Fun!"

Page 1

1. Evaluate $\int_{-2}^{-1} 3x^2 dx$.

A. -9 B. -7

C. 7

D. 9

E. NOTA

2. Let f(x) be a continuous function with domain of all real numbers. Given $\int_{-1}^{3} f(x) dx = 4$ and $\int_{7}^{3} f(x)dx = -1$, compute the value of $\int_{-1}^{7} (1 + f(x))dx$.

A. 5

B. 6

C. 11

D. 13

E. NOTA

3. Find the average value of $f(x) = 4e^x + 2019$ over the interval [0, 4].

A. $e^4 - 1$ B. $4e^4 - 4$ C. $e^4 + 2018$ D. $4e^4 + 2015$

E. NOTA

4. The left-hand Riemann sum approximation for $\int_2^8 \ln x \, dx$ using three equal subdivisions is equal to

A. 2 ln 48

B. 2 ln 80

C. 2 ln 192

D. 2 ln 384

E. NOTA

5. Let f(x) be a degree two polynomial with nonzero, distinct roots a and b. If $F(x) = \int f(x) dx$ and F(0) = 0, then if F(a) = 0, what is the value of $\frac{a}{b}$?

A. -1 B. $\frac{1}{2}$

C. 2

D. 3

E. NOTA

6. $\int_{1}^{2} \frac{2x-3}{x^2-2x+2} dx =$

A. $\frac{\pi}{4}$ B. $\ln 2 - \frac{\pi}{4}$ C. $\ln 2 - \frac{\pi}{2}$ D. $2 \ln 2 - \frac{\pi}{4}$

E. NOTA

7. $\lim_{t \to \infty} \frac{\int_{2019}^{t} x^{x} dx}{t^{t}} =$

A. 0

B. 1

C. *e*

D. ln 2019

E. NOTA

- 8. Every year, the summer integral briefly visits, and the people hear its inspirational and familiar tone. What is $\int_0^{2019} x \, dx$?
 - A. 2019
- B. $\frac{2019^2}{2}$ C. 2019^2
- D. Does Not Exist E. NOTA

- 9. $\int_{1}^{2} (3^{x} \ln 9) dx =$
 - A. 6
- B. 6 ln 3
- C. 12
- D. 6 ln 9
- E. NOTA
- 10. Let the population of ducks in Gena's pond be P(t) for a continuous function P. If the rate of change of the duck population is inversely proportional to the square root of the current population, and P(0) = 36 and P'(0) = 2, then find P(3).
 - A. $\frac{225}{4}$
- B. $9\sqrt[3]{100}$ C. $18\sqrt[3]{18}$ D. $\frac{441}{4}$
- E. NOTA
- 11. Find the volume created when the region bounded by $y = 1 x^2$ and y = 0 is rotated around the line y = 0.
 - A. $\frac{8\pi}{15}$ B. $\frac{2\pi}{3}$ C. $\frac{16\pi}{15}$ D. $\frac{4\pi}{3}$

- E. NOTA
- 12. Approximate $\int_{\pi}^{2\pi} \frac{\sin x}{x} dx$ using the first two nonzero terms of the Maclaurin series for $\sin x$ centered around x = 0.
- A. $-\pi \pi^3$ B. $\pi \pi^3$ C. $\pi \frac{7\pi^3}{9}$ D. $-\pi$
- E. NOTA
- 13. Find the area bounded between the graphs of $y = x^2$ and y = x + 2.
 - A. $\frac{3}{2}$
- B. $\frac{5}{3}$
- C. $\frac{7}{2}$ D. $\frac{9}{2}$
- E. NOTA

14. Find the area bounded by $f(x) = \sqrt{16 - x^2}$ and g(x), where g(x) = 0 for x < 0 and g(x) = x for $x \ge 0$.

A. 3π

B. 4π

 $C.6\pi$

D. 8π

E. NOTA

15. A rectangle has vertices at (-4, 16), (4, 16), (-4, 4), (4, 4). All points in the rectangle where $y > x^2$ are colored blue, whereas every other point is colored red. What fraction of the rectangle is colored blue?

A. $\frac{2}{9}$ B. $\frac{1}{3}$

C. $\frac{2}{3}$

 $D.\frac{7}{9}$

E. NOTA

16. $\int_{1}^{e} x^{\ln x - 1} \ln x \, dx =$

A. $\frac{e^{-1}}{2}$ B. $\frac{e}{2}$

C. e - 1 D. $e - \frac{1}{e}$

E. NOTA

17. $\int_{-2}^{3} \frac{1}{x^2-1} dx =$

A. $-\frac{1}{2}\ln 6$ B. $\frac{1}{2}\ln \frac{2}{3}$ C. $\frac{1}{2}\ln \frac{3}{2}$ D. $\frac{1}{2}\ln 6$

E. NOTA

18. $\int_{-2}^{2} \frac{x \sin(\cos x) + 2}{x^2 + 4} dx =$

A. $-\frac{\pi}{2}$ B. 0

 $C.\frac{\pi}{2}$

D. π

E. NOTA

- 19. The Lumobile travels along a straight line at $15 \frac{m}{s}$ at time 0s and $40 \frac{m}{s}$ at time 5s. Which of the following statements is/are ALWAYS true, assuming the velocity function is differentiable?
 - I. The Lumobile has traveled at most 200*m*.
 - II. The Lumobile accelerated at $5 \frac{m}{s^2}$ sometime between 0s and 5s.
 - III. The Lumobile has traveled at least 75*m*.
 - IV. The Lumobile traveled at 20.19 $\frac{m}{s}$ sometime between 0s and 5s.

A. II only

B. IV only

C. II and IV only D. I, II, III, IV

E.NOTA

20. $\int_0^3 |x^2 - 4x + 3| dx$

- A. $\frac{4}{2}$ B. $\frac{8}{3}$
- C. $\frac{13}{3}$ D. $\frac{17}{3}$
- E. NOTA

21.

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{i}{in+n^2}=$$

- A. $\ln 2 1$ B. $1 \ln \frac{2}{3}$ C. $1 \ln \frac{3}{2}$ D. $\ln \frac{e}{2}$
- E. NOTA

22. Evaluate:

$$\int_{\frac{\sqrt{3}}{2}}^{1} \frac{\sqrt{1-x^2}}{x} dx$$

- A. $\frac{1}{2} \ln 3 \frac{1}{2}$ B. $\frac{1}{2} \ln 3 \frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{2} \frac{1}{2} \ln 3$ D. $\ln 3 \frac{1}{2}$
- E. NOTA
- 23. Let f and g be defined such that $f'(x) = f(x)^2 + g(x)^2$ and g'(x) = 2f(x)g(x) + 1. Given $f(0) = \frac{1}{5}$ and $g(0) = \frac{4}{5}$, find the value of $f\left(\frac{\pi}{12}\right) + g\left(\frac{\pi}{12}\right)$.

(Hint: add the two given equations.)

- A. 0
- B. $\frac{\sqrt{3}}{3}$ C. $\sqrt{3}$
- D. 1
- E. NOTA
- 24. Jonathan loves dancing to TWICE songs and improves as he dances more. If he learns TWICE dances at a rate of x% per second, where x is the number of seconds that have elapsed since he started, how many seconds will it take for Jonathan to learn one full TWICE dance? (i.e. get to 100%)
 - A. $10\sqrt{2}$
- B. 15
- C. $15\sqrt{2}$
- D. 20
- E. NOTA

25. Let $f(x) = e^x \sin x$ and $g(x) = e^x \cos x$. Find the value of the integral:

$$\int_{0}^{\pi} \left(g(x) - \int_{0}^{x} \left(f(y) + g(y) \right) dy \right) dx$$

- A. $-1 e^{\pi}$ B. $1 e^{\pi}$
- C. 0
- D. e^{π}
- E. NOTA

26. Let $f(x) = -2x^3 - x - 9$. Partition [0, 2019] into 4 non-overlapping subintervals of equal length, then use this partition to approximate $\int_0^{2019} f(x) dx$ by L, R, S, and T, where L = the left-hand Riemann approximation, R = the right-hand Riemann approximation S =the Simpson's Rule approximation. T =the trapezoidal rule approximation Which of the following is true (assuming that *L*, *R*, *S*, and *T* approximate the integral and not the area)?

- A. R > T > S > L
- B. L > T > S > R
- C. L > S > T > R

- D. L > T > R > S
- E. NOTA

27. Let $f(x) = 1 + 2x + 3x^2 + \dots + 2019x^{2018}$ and $F(x) = \int f(x) dx$. Evaluate F(1).

- A. 0
- B. 2018
- C. 2019
- D. 2020
- E. NOTA

28. Alice Ha keeps integrating every single term in $\sum_{n=1}^{\infty} \frac{x}{2^{n}}$, but can't quite seem to reach the end! Find the following integral: $\int \left(\sum_{n=1}^{\infty} \frac{x}{2^n}\right) dx$.

- A. $\frac{x}{2} + C$ B. x + C C. $\frac{x^2}{2} + C$ D. $x^2 + C$
- E. NOTA

29. David dislikes numbers less than 25. Let the David utility function, D(x), be described as the following piecewise function: $D(x) = \begin{cases} 1 & \text{if } x \ge 25 \\ 0 & \text{if } x < 25 \end{cases}$. Find $\int_0^{10} D(x^2) dx$.

- A. 5
- B. 25
- C. $\frac{125}{3}$ D. $\frac{875}{3}$
- E. NOTA

30. Evaluate:

$$\int_0^1 \frac{1-x}{e^x + x} dx$$

- A. $\ln\left(1-\frac{1}{a}\right)$ B. 0
- C. $\ln(\frac{e}{a-1})$ D. $\ln(e+1) 1$ E. NOTA