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for a positive real constant a.

Find the minimum possible area of the finite region bounded by f(x) and g(x).
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Consider the polynomial
p(xX)=rx>+ A —-7)x*—1r3x+ (r+1)3

where r is a real number changing at a constant rate of +2 units per second.

In units per second, let:

A be the rate of change of the sum of the roots B be the rate of change of the product of the
whenr =3 roots whenr = 3
Find A — B.
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It turns outthat 24+ B + C = pq + \/Earctan(ﬁ) — \/Earctan (\/%) + In(p) for a prime number p.
Find q.
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Let R denote the finite region bounded by the x-axis and the curve y = 3 — 3x2.
Let A be the area of R.

Let B be the volume of the solid formed when R is rotated about the x-axis.

Let C be the volume of the solid formed when R is rotated about the line x = 1.

Let D be the volume of the solid formed when R is rotated about the line y = x — 1.

C D
Find— + —.
1nA B
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Let L represent the line tangent to the curve x?y — xy? — x + y = —1 at the point (1,2).

x(t) = et — 2t

y(®) = t2 —In(t + 1) =0

Let M represent the line tangent to the curve {

If (A, B) is the point of intersection between L and M, find A + B.
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Let f(x) = 3x* — 2x3 + x%2 — x + 2.

If
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Let f(x) = 4x3 — 2x + 2019. Let R be the finite region bounded by f (x), the x-axis, x = 1, and x = 3.

Let A be the value obtained when the area of R is approximated using a Left-handed Riemann Sum with
8 equal subintervals.

Let B be the value obtained when the area of R is approximated using a Right-handed Riemann Sum
with 8 equal subintervals.

Let C be the value obtained when the area of R is approximated using the Trapezoidal Rule with 8 equal
subintervals.

Let D be the value obtained when the area of R is approximated using Simpson’s Rule with 8 equal
subintervals.

FindA+ B — 2C + D.
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Let A = 2019 if the statement
“There exists ¢ € (1,3) such that the slope of the tangent line to f(x) = ﬁ atx =cis—1"
is true, or —2019 if it is false.

Let B = 2020 if the statement
“A function may only cross its oblique asymptote a finite number of times”
is true, or —2020 if it is false.

Let C = 2021 if the statement
“There exists a function that is continuous and differentiable
everywhere, but has a second derivative nowhere”
is true, or —2021 if it is false.

FindA + B + C.
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Let
A be the area contained within the curve B be the area contained within the curve
—2)2 2
M+M:1 |x| + |y| = 20
4 9
C be the area contained within the polar curve D be the area contained within the polar curve
r? = 3sin(26) r=1—cos(8)

FindA+B +C + D.
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