Answers:

- 1. D
- 2. D
- 3. B
- 4. D
- 5. E
- 6. D
- 7. D
- 8. B 9. A
- 10. C
- 11. B
- 12. C
- 13. A
- 14. C
- 15. D
- 16. B
- 17. B
- 18. B
- 19. A
- 20. E
- 21. B
- 22. B
- 23. A
- 24. C 25. B
- 26. E
- 27. A
- 28. D
- 29. A
- 30. D

Solutions:

1. It is well known that $\frac{a}{1-r} = a + ar + ar^2 + ...$ for all $-\infty < a < \infty, -1 < r < 1$. if r is outside of this range, then either $r=1$, in which case $\frac{a}{1-r}$ is undefined and $a\ +\ a r\ +$ $ar^2 + ...$ diverges, or $r \neq 1$, in which case $\frac{a}{1-r}$ is some real number, and the righthand side diverges. Thus, in our case, $r = 9x$, so $-1 < 9x < 1$. Dividing by 9 yields $\frac{-1}{9} < x < \frac{1}{9}$. \overline{D} 2. Let $a_k = \frac{(-1)^k x^2}{e^k}$ $\frac{1}{e^{k}}$. Perform the ratio test on this sequence: $\lim_{k\to\infty} \frac{1}{k}$ a_{k+1} $rac{k+1}{a_k} = \frac{(-1)^{k+1} x^2}{e^{k+1}}$ $\frac{y}{e^{k+1}}$. e^{k} $\frac{e^{k}}{(-1)^{k} \cdot x^{2}}$ = − e^{-1} = r . Clearly, −1 < r < 1. Thus, this series converges for any x . Note: The series $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}$ e^{k} $\alpha_{k=0}^{\infty} \frac{(-1)^{k}}{e^{k}}$ converges, so multiplying it by x^2 will multiply the sum by a constant without changing convergence. D

3.
$$
\sqrt[3]{12\sqrt[3]{12\sqrt[3]{12...}}}=12^{1/3}\cdot (12^{1/3})^{1/3}\cdot ((12^{1/3})^{1/3})^{1/3}\cdot ...=12^{\frac{1}{3}+(\frac{1}{3})^2+(\frac{1}{3})^3+...}=12^{\frac{1/3}{1-(1/3)}}=12^{\frac{1/3}{1-(1/3)}}=12^{1/2}=2\sqrt{3}
$$

B

4.
$$
\sqrt{12 + \sqrt{12 + \sqrt{12 + \dots}}}} = x = \sqrt{12 + x} \rightarrow x^2 = 12 + x \rightarrow 0 = x^2 - x - 12 = (x - 4)(x + 3)
$$

Because x is a square root of a sum of positive numbers, $x > 0 \rightarrow x = 4$. D

5. Let us consider each of I, II, and III separately.

I:

Consider the sequence $a_n = (\frac{1}{1}, -\frac{1}{2})$ $\frac{1}{2}$, $\frac{1}{3}$ $\frac{1}{3}, -\frac{1}{4}$ $\frac{1}{4}$,...). It is well known that $\sum_{k=1}^{\infty} a_k = ln(2)$. However, consider the sequence b_n for which $b_i = a_{2i}$. Since every element in sequence b_n is also in $a_n,\, b_n$ is a subsequence of $a_n.$ However, $\sum_{k=1}^\infty b_k=-\frac{1}{2}$ $\frac{1}{2} - \frac{1}{4}$ $\frac{1}{4} - \frac{1}{6}$ $\frac{1}{6}$ –... = $-\frac{1}{2}$ $rac{1}{2}$ $\left(\frac{1}{1}\right)$ $\frac{1}{1} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3}$ +…). Since the latter series diverges, $\sum_{k=1}^{\infty}b_k$ also diverges. However, $\sum_{k=1}^{\infty}a_k$ converges. Therefore, (I) need not be true.

II:

Consider the sequence $a_n = \frac{(-1)^n}{\sqrt{n}}$ $\frac{(-1)^n}{\sqrt{n}}$. Clearly, $|a_n|$ is decreasing and $\displaystyle{\lim_{i\to \infty}} a_i=0.$ Thus, by the Alternating Series Test, $\sum_{k=1}^{\infty} a_k$ converges. However, observe that $a_n{}^2=\frac{(-1)^{2n}}{n}$ $\frac{1}{n} \frac{1}{n} = \frac{1}{n}$ $\frac{1}{n}$. It is well known that $\sum_{k=1}^{\infty} \frac{1}{k}$ k $\sum_{k=1}^{\infty} \frac{1}{k} = \sum_{k=1}^{\infty} a_k^2$ diverges. Therefore, (II) need not be true. III:

Consider the sequence $a_n = \frac{(-1)^n}{n}$ $\frac{1}{n}$. Clearly, $|a_n|$ is decreasing, and $\lim_{i\to\infty}a_i=0.$ Thus, by the Alternating Series Test, $\sum_{k=1}^{\infty}a_k$ converges. However, observe that $|a_n|=\frac{|(-1)^n|}{|n|}=\frac{1}{n}$ $\frac{1}{n}$. It is well known that $\sum_{k=1}^{\infty} \frac{1}{k}$ k $\sum_{k=1}^{\infty}\frac{1}{k}=\sum_{k=1}^{\infty}|a_k|$ diverges. Therefore, (III) need not be true.

Since none of (I, II, III) must be true, the answer is: None E.

6. The given limit is of the form of a Reimann Sum. In a Reimann Sum representing $\int_a^b f(x) dx$, the $\frac{i}{n}$ term represents x , the operations performed on the $\frac{i}{n}$ term represent $f(x)$, the $\frac{1}{n}$ term represents dx , and the bounds of the sum represent the limits of integration (a finite number represents 0, n represents 1, $2n$ represents 2, etc.). Using this information, $f(x) = (1 + x)^3$, and the limits of integration are 0 and 3. $\int_0^3 (1+x)^3 dx = \left[\frac{(1+x)^4}{4}\right]$ $\left[\frac{(x)^4}{4}\right]_0^3 = \frac{4^4}{4}$ $\frac{1^4}{4} - \frac{1^4}{4}$ $rac{1^4}{4} = \frac{256-1}{4}$ $rac{6-1}{4} = \frac{255}{4}$ $\frac{33}{4}$. D k

7.
$$
e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}
$$
 implies that $3^x = e^{\ln(3) \cdot x} = \sum_{k=0}^{\infty} \frac{(\ln(3) \cdot x)^k}{k!}$.
D.

8. Call the given sum $S = \sum_{n=1}^{\infty} \frac{n^2}{2^{2n}}$ $\frac{\infty}{n} = 1 \frac{n^2}{2^{2n}} = \frac{1}{4}$ $\frac{1}{4} + \frac{4}{16}$ $\frac{4}{16} + \frac{9}{64}$ $\frac{9}{64} + \frac{16}{256}$ $\frac{16}{256} + ...$ Dividing by 4 gives $\frac{S}{4} = \frac{1}{16}$ $\frac{1}{16} + \frac{4}{64}$ $\frac{4}{64}$ + ଽ $\frac{9}{256}$ +.... Subtracting the two previous equations yields $\frac{3S}{4} = \frac{1}{4}$ $\frac{1}{4} + \frac{3}{16}$ $\frac{3}{16} + \frac{5}{64}$ $\frac{5}{64} + \frac{7}{25}$ $\frac{7}{256}$ +.... Dividing by 4 gives $\frac{3S}{16} = \frac{1}{16}$ $\frac{1}{16} + \frac{3}{64}$ $\frac{3}{64} + \frac{5}{25}$ $\frac{5}{256}$ +.... Subtracting the two previous equations yields $(\frac{125}{16})$ $\frac{125}{16}$ – $3S.$ $\frac{3S}{16}$) = $\frac{9S}{16}$ = $\frac{1}{4}$ $\frac{1}{4} + \frac{2}{16}$ $\frac{2}{16} + \frac{2}{64}$ $\frac{2}{64} + \frac{2}{256}$ $\frac{2}{256} + \ldots = -\frac{1}{4} + \left(\frac{2}{4} + \frac{2}{16}\right)$ $\frac{2}{16} + \frac{2}{64}$ $\frac{2}{64} + \dots$) = $-\frac{1}{4} + \frac{2/4}{1-\frac{1}{2}}$ $\frac{1}{1-\frac{1}{4}}$ $=-\frac{1}{4}$ $\frac{1}{4}$ + భ $\frac{2}{3}$ ర $=-\frac{1}{4}$ $\frac{1}{4} + \frac{2}{3}$ ଷ $=\frac{-3+8}{12}$ $\frac{3+8}{12} = \frac{5}{12}$ $\frac{5}{12} = \frac{9S}{16}$ $rac{9S}{16}$ \Rightarrow $S = \frac{5}{12}$ $rac{5}{12} \cdot \frac{16}{9}$ $rac{16}{9} = \frac{20}{27}$ $\frac{20}{27}$. B

9. First, notice that $\sum_{n=1}^{\infty} \frac{(x-4)^{2n}}{(x-4)^n}$ $\sum_{n=1}^{\infty} \frac{(x-4)^{2n}}{n \cdot 4^n}$ is completely symmetric about $x=4$ because the only term involving $x - 4$ is raised to $2n$, an even power. Therefore, a number r is within the interval of convergence if and only if $4 - (r - 4) = 8 - r$ is also within the interval of convergence.

In order to determine the interval of convergence, let us use the ratio test. Calling the sequence a_n , we have $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$ $rac{u_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(x-4)^{2(n+1)}}{(n+1) \cdot 4^{n+1}}$ $\frac{(x-4)^{2(n+1)}}{(n+1)\cdot4^{n+1}}$ / $\frac{(x-4)^{2n}}{n\cdot4^n}$ $\frac{(-4)^{2n}}{n \cdot 4^n} = \lim_{n \to \infty} \frac{(x-4)^{2(n+1)} \cdot n \cdot 4^n}{(n+1) \cdot 4^{n+1} \cdot (x-4)^2}$ $\frac{(x-4)^{n+1} \cdot (x-4)^{2n}}{(n+1) \cdot 4^{n+1} \cdot (x-4)^{2n}} =$ $\lim_{n\to\infty} \frac{(x-4)^2}{4}$ $\frac{f^{(4)}(m)}{4}$. Thus, if $\lim_{n\to\infty}$ $(x-4)^2$ $\frac{d^2-4j}{4}$ < 1, the series converges, and if $\lim_{n\to\infty}$ $(x-4)^2$ $\frac{f^{(4)}}{4}$ > 1, the series diverges. From this fact and from the symmetry about $x = 4$, the interval of convergence

must be either (2, 6) or [2, 6], depending on whether the series converges at $x = 6.2$. Plugging in $x = 6$, the given series is $\sum_{n=1}^{\infty} \frac{2^{2n}}{n \cdot 4^n}$ $\sum_{n=1}^{\infty} \frac{2^{2n}}{n \cdot 4^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ n^{\prime} $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. Thus, the interval of convergence is (2, 6) A.

10. The motivation behind this solution is the intuition that the graph of $f(x) = e^{-x} |\sin(x)|$ has periodic "humps" with a period of π , the same period as $|\sin(x)|$. The area of these humps can be calculated using a geometric series.

More rigorously:

 $|\sin(x + \pi)| = |\sin(x)\cos(\pi) + \sin(\pi)\cos(x)| = |- \sin(x)| = |\sin(x)|.$ Call $f(x) = e^{-x} |\sin(x)|$. $f(x + \pi) = e^{-x-\pi} |\sin(x + \pi)| = e^{-\pi} \cdot e^{-x} |\sin(x)| = e^{-\pi} f(x)$. The question asks to evaluate $\int_0^\infty (e^{-x} |sin(x)|) \ dx$. We can "split" this integral into intervals of width π by rewriting the integral as $\sum_{n=0}^{\infty}[\int_{n\pi}^{(n+1)\pi}(e^{-x}|sin(x)|)\ dx]$ $\sum_{n=0}^{\infty} \left[\int_{n\pi}^{(n+1)\pi} (e^{-x} |\sin(x)|) \, dx \right].$ Additionally, using previously obtained information, $\int_{n\pi}^{(n+1)\pi} f(x)\ dx = \int_{(n-1)\pi}^{n\pi} f(x+1)$ $(n-1)\pi$ $\pi)$ $dx = \int_{(n-1)\pi}^{n\pi} e^{-\pi} f(x)\, dx = \ e^{-\pi}\cdot\int_{(n-1)\pi}^{n\pi} f(x)\, dx.$ Thus, the area of each interval is $e^{-\pi}$ times the area of the previous integral. Therefore, $\sum_{n=0}^\infty \int_{n\pi}^{(n+1)\pi}(e^{-x}|sin(x)|) \ dx$ $\int_{n=0}^{\infty} \int_{n\pi}^{(n+1)\pi} (e^{-x} |\sin(x)|) dx =$ $\frac{\int_0^{\pi} e^{-x} |\sin(x)| dx}{1-e^{-x}}.$ Evaluate $\int_0^{\pi} (e^{-x} | sin(x) |) dx = \int_0^{\pi} e^{-x} \cdot sin(x) dx$ by using integration by parts: $\int e^{-x} \cdot \sin(x) dx$ π 0 $= [-e^{-x}\sin(x)]_0^{\pi} - \int -e^{-x} \cdot \cos(x) dx$ π 0 $= (0 - 0) + \{[-e^{-x}\cos(x)]_0^{\pi} - \int_{0}^{\pi} -e^{-x} \cdot -\sin(x) dx\}$ 0 } $= (-e^{-\pi} \cdot (-1) - (-1) \cdot 1) - | e^{-x} \cdot sin(x) dx$ π 0 \Rightarrow 2 $\int e^{-x} \cdot \sin(x) dx$ π 0 $= e^{-\pi} + l$ \Rightarrow $\int e^{-x} \cdot \sin(x) dx$ π 0 = $e^{-\pi} + l$ 2 Therefore, $\int_0^\infty (e^{-x} |\sin(x)|) dx =$ $e^{-\pi}+1$ $\frac{e^{-\pi t}}{2i} = \frac{e^{-\pi} + l}{2(1 - e^{-\pi})}$ $\frac{e^{-\pi}+l}{2(l-e^{-\pi})}\bigg(\cdot\frac{e^{\pi}}{e^{\pi}}\bigg)$ $\frac{e^{\pi}}{e^{\pi}}$ = $\frac{e^{\pi}+1}{2(e^{\pi}-1)}$ $2(e^{\pi}-1)$ C.

11. Ben: $\int_0^6 e^x dx = [e^x]_0^6 = e^6 - 1 = B$.

Zhao: Each interval has width $\frac{6}{2}$ = 3. Thus, $\frac{e^{0}+e^{3}}{2}$ $\frac{+e^3}{2} \cdot 3 + \frac{e^3 + e^6}{2}$ $\frac{+e^6}{2} \cdot 3 = \frac{3}{2} + 3e^3 + \frac{3}{2}$ $\frac{3}{2}e^6 = Z.$ $Z - B = \frac{3}{3}$ $\frac{3}{2} + 3e^3 + \frac{3}{2}$ $\frac{3}{2}e^6 - (e^6 - 1) = \frac{5}{2} + 3e^3 + \frac{1}{2}$ $\frac{1}{2}e^{6}$. B.

12. Generally, the Taylor expansion about $x = a$ for $f(x) = e^x$ is $\sum_{n=0}^{\infty} e^a \frac{(x-a)^n}{n!}$ n! $\sum_{n=0}^{\infty} e^{a} \frac{(x-a)^n}{n!}$. Thus, the 2nd degree approximations that each person uses are as follows: Jonathan: $\frac{1}{\omega} + \frac{x^2}{\omega} + \frac{x^2}{\omega} = 1 + x + x^2$

$$
\text{Henrik: } e^6 \left(\frac{1}{0!} + \frac{(x-6)^1}{1!} + \frac{(x-6)^2}{2!} \right)
$$

Defining J as the integral that Jonathan calculates and H as the integral Henrik calculates:

$$
J = \int_0^6 (1 + x + x^2) dx = [x + \frac{x^2}{2} + \frac{x^3}{6}]_0^6 = 6 + 18 + 36 = 60.
$$

\n
$$
H = \int_0^6 e^6 (1 + \frac{x - 6}{1} + \frac{(x - 6)^2}{2}) dx = e^6 [x + \frac{(x - 6)^2}{2} + \frac{(x - 6)^3}{6}]_0^6 = e^6 (6 + 0 + 0 - (0 + 18 - 36)) = 24e^6.
$$

\nTo answer whose approximation is more accurate, we compare each approximation to the actual integral, which we determined in Question 10 to be $e^6 - 1 = I$.
\n
$$
|J - I| = |e^6 - 1 - 60| = |e^6 - 61|.
$$
\n
$$
3 > e = 2.7... > 2 \Rightarrow 3^6 = 729 > e^6 > 64 = 2^6.
$$
\nTherefore, $668 > |e^6 - 61| > 3$.
\n
$$
|H - I| = |e^6 - 1 - 24e^6| = |23e^6 + 1|.
$$
\n
$$
e^6 > 64.
$$
\nTherefore, $|23e^6 + 1| > 1473 = 23$.
\n $64 + 1.$ \nTherefore, Jonathan's integral approximation is more accurate.
\nAdditionally, the difference between the two approximations is $24e^6 - 60$
\nC.
\n13. Factoring the bottom polynomial gives $\frac{n - I}{n^3 + 10n^2 + 19n - 30} = \frac{n - I}{(n + 5)(n - I)(n + 6)} = \frac{I}{(n + 5)(n + 6)}.$
\nNow, using partial fraction decomposition, $\frac{I}{(n + 5)(n + 6)} = \frac{A}{(n + 5)(n - I)(n + 6)} = \frac{I}{(n + 5)(n + 6)}.$
\nNow, using partial fraction decomposition, $\frac{I}{(n + 5)(n + 6)} = \frac{A}{(n + 5)} + \frac{B}{(n + 6)} + B$.
\n
$$
5) = 1 \Rightarrow A + B = 0, 6A + 5B = 1 \Rightarrow A = 1, B = -1.
$$
\nThus, the given series is $\sum_{n=4}^{\infty} \$

$$
\frac{1}{9}
$$

14. Let $x = 2 + \frac{3}{2 + \frac{3}{2 + ...}}$ $x = 2 + \frac{3}{x} \rightarrow x - 2 - \frac{3}{x} = 0 = x^2 - 2x - 3 = (x - 3)(x + 1)$. Because

the given continued fraction contains only positive numbers being summed or divided, $x > 0 \rightarrow x = 3$

$$
\mathsf{C}.
$$

15. Write the sum as
$$
\sum_{n=0}^{\infty} \frac{(n+2)^2}{n!} = \sum_{n=0}^{\infty} \frac{n^2}{n!} + \frac{4n}{n!} + \frac{4}{n!} = \sum_{n=0}^{\infty} \frac{n^2}{n!} + \sum_{n=0}^{\infty} \frac{4n}{n!} + \sum_{n=0}^{\infty} \frac{4}{n!}
$$

\n $\sum_{n=0}^{\infty} \frac{4}{n!} = 4 \sum_{n=0}^{\infty} \frac{1}{n!} = 4e$.
\n $\sum_{n=0}^{\infty} \frac{4n}{n!} = 0 + \sum_{n=1}^{\infty} \frac{4}{(n-1)!} = 4 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = 4 \sum_{n=0}^{\infty} \frac{1}{n!} = 4e$.
\n $\sum_{n=0}^{\infty} \frac{n^2}{n!} = 0 + \sum_{n=1}^{\infty} \frac{n}{(n-1)!} = \sum_{n=1}^{\infty} \frac{n-1}{(n-1)!} + \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = (0 + \sum_{n=2}^{\infty} \frac{n-1}{(n-1)!}) + \sum_{n=0}^{\infty} \frac{1}{n!}$
\n $= (\sum_{n=2}^{\infty} \frac{1}{(n-2)!}) + e = (\sum_{n=0}^{\infty} \frac{1}{n!}) + e = e + e = 2e$
\nTherefore, $\sum_{n=0}^{\infty} \frac{(n+2)^2}{n!} = 4e + 4e + 2e = 10e$

D.

16. Evaluate each case:

I:

Use the integral test for this series. The corresponding integral to this series is

 $\int_{2}^{\infty} \frac{1}{x \ln x}$ $\int_2^{\infty} \frac{l}{x \cdot ln(x)} dx$. Perform a u substitution, with $u = ln(x)$, $du = \frac{dx}{x}$. $\frac{dx}{x}$, then $\int_2^{\infty} \frac{l}{x \cdot ln(l)}$ $\int_2^{\infty} \frac{1}{x \cdot ln(x)} dx =$ $\int_{\ln(2)}^{\infty} \frac{du}{u}$ \boldsymbol{u} $\int_{ln(2)}^{ln\infty} \frac{du}{u} = [ln(u)]_{ln(2)}^{in}$. At $u = \infty$, $ln(u)$ is infinite, so the integral diverges. The Integral Test Implies that the given series also diverges. II:

Notice that for positive $n, n^n > n! = n \cdot (n - 1) \cdot ... \cdot 1$. Therefore, for positive n, $ln(n^n) = n \cdot ln(n) > ln(n!)$, and thus $\frac{1}{n \cdot ln(n)} < \frac{1}{ln(n!)}$. Therefore, $\sum_{n=2}^{\infty} \frac{1}{n \cdot ln(n)}$ $n \cdot ln(n)$ $\frac{\infty}{n} \frac{l}{n \cdot ln(n)}$ < $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ $ln(n!)$ $\sum_{n=2}^{\infty} \frac{1}{\ln(n!)}$. From part I of this question, we know that $\sum_{n=2}^{\infty} \frac{1}{n \cdot ln(n+1)}$ $n \cdot ln(n)$ $\sum_{n=2}^{\infty} \frac{1}{n \cdot ln(n)}$ diverges. By the Direct Comparison Test, $\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$ $ln(n!)$ $\sum_{n=2}^{\infty} \frac{1}{\ln(n!)}$ also diverges.

$$
\text{III:}\quad
$$

$$
\sum_{n=2}^{\infty} \frac{1}{\ln(n)^n} = \sum_{n=2}^{\infty} \frac{1}{e^{n \cdot \ln(\ln(n)^n)}} = \sum_{n=2}^{\infty} \frac{1}{e^{n \cdot \ln(\ln(n))}}.
$$

Define $a_n = \frac{1}{e^{n \cdot \ln(\ln(n))}}$.

$$
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{e^{(n+1) \cdot \ln(\ln(n+1))}}}{\frac{1}{e^{n \cdot \ln(\ln(n))}}} \right| = \lim_{n \to \infty} \left| \frac{e^{n \cdot \ln(\ln(n))}}{e^{(n+1) \cdot \ln(\ln(n+1))}} \right|
$$

$$
= \lim_{n \to \infty} \left| \frac{e^{n \cdot \ln(\ln(n))}}{e^{n \cdot \ln(\ln(n+1))}} \cdot \frac{1}{e^{\ln(\ln(n+1))}} \right| = \lim_{n \to \infty} \left| \frac{e^{\ln(\ln(n))}}{e^{\ln(\ln(n+1))}} \cdot \frac{1}{\ln(n+1)} \right|
$$

$$
= \lim_{n \to \infty} \left| \left(\frac{\ln(n)}{\ln(n+1)} \right)^n \cdot \frac{1}{\ln(n+1)} \right| \cdot \ln(n) < \ln(n+1) \cdot \lim_{n \to \infty} \frac{1}{\ln(n+1)} = 0. \text{ Therefore, } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0, \text{ and by the Ratio Test, } \sum_{n=2}^{\infty} \frac{1}{\ln(n)n} \text{ converges.}
$$

- B.
- 17. Write $f(x)$ as $g(x) \cdot h(x)$, where $g(x) = e^x$, $h(x) = \frac{x}{1-x^2}$. Consider $\frac{x}{1-x^2}$ to be an infinite geometric series with $a = x$ and $r = x^2$. Thus, $\frac{x}{1-x^2} = (x)(1 + x^2 + x^4 + ...)$. Additionally, $e^x = 1 + x + \frac{x^2}{2!}$ $\frac{x^2}{2!} + \dots$ Therefore, $f(x) = g(x) \cdot h(x) = (1 + x + \frac{x^2}{2!})$ $\frac{x}{2!} +$ x^3 $\frac{x^3}{3!}...$)(x)($l + x^2 + x^4 + ...$) = x($l + x + (l + \frac{l}{2!})$ $\frac{1}{2!}$) $x^2 + (1 + \frac{1}{3!})$ $\frac{1}{3!}$) $x^3 + (1 + \frac{1}{2!})$ $\frac{1}{2!} + \frac{1}{4!}$ $\frac{1}{4!}$) x^4 +...). The 4th degree Maclaurin Series Approx. is therefore $M_4(x) = x + x^2 + (1 + \frac{1}{x})$ $\frac{1}{2!}$) x^3 + $(1 + \frac{1}{21})$ $\frac{1}{3!}$) $x^4 = x + x^2 + \frac{3}{2}$ $\frac{3}{2}x^3 + \frac{7}{6}$ $\frac{7}{6}x^4$. $M_4(I) = I + I^2 + \frac{3}{2}$ $\frac{3}{2}$ I^3 + $\frac{7}{6}$ $\frac{7}{6}I^4 = \frac{6+6+9+7}{6}$ $\frac{+9+7}{6} = \frac{28}{6}$ $\frac{28}{6} = \frac{14}{3}$ 3 B.
- 18. This series is of the form $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ \boldsymbol{n} $\sum_{n=1}^{\infty} \frac{x^n}{n}$, for which $x = -\frac{1}{2}$ $\frac{1}{2}$. If we consider this series to be a function $f(x) = x + \frac{x^2}{2}$ $\frac{x^2}{2} + \frac{x^3}{3}$ $\frac{x^3}{3}$ +... evaluated at $x = -\frac{1}{2^2}$ $\frac{1}{2}$, we can differentiate each term to obtain $f'(x) = 1 + x + x^2 + ... + x^i + ...$ For $x \in (-1, 1)$, $f'(x)$ is a geometric series with first term 1 and common ratio x, which implies $f'(x) = \frac{1}{1-x} = \frac{df}{dx}$. $\frac{df}{dx}$. Thus, $f = \int \frac{dx}{1-x^2}$ $\frac{ax}{1-x}$ =

 $-ln|I - x| + C$. To determine C, evaluate $f(0) = 0 + \frac{\theta^2}{2}$ $\frac{\rho^2}{2} + \frac{\rho^3}{3}$ $\frac{\gamma}{3} + ... = 0 = -\ln|I - 0| +$ $C = 0 + C = C = 0$. Therefore, the answer is $f(-\frac{1}{2}) = -\ln|1 + \frac{1}{2}|$ $\frac{1}{2}$ | = $-\ln(\frac{3}{2})$ $\frac{3}{2}$) = $ln(\frac{2}{3})$ $\frac{2}{3}$). B.

19. Notice that the denominator may be factored as $x^2 + 7x + 12 = (x + 3)(x + 4)$. Use partial fraction decomposition to obtain $\frac{1}{(x+3)(x+4)} = \frac{1}{x+4}$ $\frac{1}{x+3} - \frac{1}{x+3}$ $\frac{1}{x+4}$. Thus, our sum is $\sum_{x=0}^{20} \left[\frac{1}{x} \right]$ $\frac{1}{x+3} - \frac{1}{x+3}$ $\int_{x=0}^{20} \left[\frac{l}{x+3} - \frac{l}{x+4} \right] = \left(\frac{l}{3} - \frac{l}{4} \right)$ $\frac{1}{4}$) + $\left(\frac{1}{4} - \frac{1}{5}\right)$ $(\frac{l}{5} - \frac{l}{6})$ $\frac{1}{6}$) + ... + $\left(\frac{1}{22} - \frac{1}{23}\right)$ $\frac{1}{23}$) + $\left(\frac{1}{23} - \frac{1}{24}\right)$ $\frac{1}{24}$ = 1 $\frac{1}{3} + (-\frac{1}{4})$ $\frac{1}{4} + \frac{1}{4}$ $\frac{1}{4}$) + (- $\frac{1}{5}$ $\frac{1}{5} + \frac{1}{5}$ $\frac{1}{5}$) + ... + (- $\frac{1}{23}$ + $\frac{1}{23}$) + (- $\frac{1}{24}$) = $\frac{1}{3}$ $\frac{1}{3} - \frac{1}{24}$ 24 $=\frac{6}{1}$ $8 - 1$ $\frac{-1}{24} = \frac{7}{24}$ $\frac{1}{24}$.

A

20. Rewrite
$$
a_i
$$
 as $a_i = \frac{(x+1)^{1/i} - x^{1/i}}{1}$. Now, rationalize the numerator of a_i , as follows: $a_i = \frac{(x+1)^{1/i} - x^{1/i}}{1} \cdot \frac{(x+1)^{(i-1)/i}x^0 + (x+1)^{(i-2)/i}x^{1/i} + (x+1)^{(i-3)/i}x^{3/i} + ... + (x+1)^{1/i}x^{(i-2)/i} + (x+1)^0x^{(i-1)/i}}{(x+1)^{(i-1)/i}x^0 + (x+1)^{(i-2)/i}x^{1/i} + (x+1)^{(i-3)/i}x^{3/i} + ... + (x+1)^{1/i}x^{(i-2)/i} + (x+1)^0x^{(i-1)/i}}$
\n
$$
= \frac{(x+1)^{(i-1)/i}x^0 + (x+1)^{(i-2)/i}x^{1/i} + (x+1)^{(i-3)/i}x^{3/i} + ... + (x+1)^{1/i}x^{(i-2)/i} + (x+1)^0x^{(i-1)/i}}{1}
$$
\n
$$
= \frac{1}{(x+1)^{(i-1)/i}x^0 + (x+1)^{(i-2)/i}x^{1/i} + (x+1)^{(i-3)/i}x^{3/i} + ... + (x+1)^{1/i}x^{(i-2)/i} + (x+1)^0x^{(i-1)/i}}
$$
\nIn the Question, we are told to evaluate $\sum_{k=1}^{\infty} a_k(1)$. Let us write $a_1(1)$ as $a_i(1) = \frac{1}{(1+i)^{(i-1)/i}x^{(i-1)/i}x^{(i-2)/i} + (1+i)^{(i-3)/i}x^{3/i} + ... + (1+i)^{1/i}x^{(i-2)/i} + (1+i)^0x^{(i-1)/i}}$
\n
$$
= \frac{1}{2^{(i-1)/i}x^{2(i-2)/i}x^{2(i-3)/i} + ... + 2^{1/i}x^{20}}
$$
 Written in this form, we can see that the denominator has *i* terms being summed, all of which are positive, and less than $2^1 = 2$. This implies that $\frac{1}{a_i(1)} < 2^{-i}$, for all positive *i*. Therefore, $a_i(1) > \frac{1}{2i}$.

21. A_n , the area of one petal, is the area under the polar curve from two consecutive instances of $sin(n\theta) = 0$. The 2 lowest positive values for which $sin(n\theta) = 0$ are $n\theta = 0, \pi$. Thus, $A_n = \frac{1}{2}$ $\frac{1}{2}\int_0^{\pi/n} r^2 d\theta = \frac{1}{2}$ $\frac{1}{2} \int_0^{\pi/n} \sin^2(n\theta) d\theta$. Using u substitution, $u = n\theta$, $du =$ $n d\theta$, $A_n = \frac{1}{2}$ $\frac{1}{2}\int_0^{\pi} \sin^2(u) \frac{du}{n}$ $\int_0^{\pi} \sin^2(u) \frac{du}{n} = \frac{1}{2n}$ $\frac{1}{2n}\int_0^{\pi} \sin^2(u) \ du$. Therefore, $\lim_{n\to\infty} [n \cdot A_n] = \lim_{n\to\infty} [n \cdot A_n]$ 1 $\frac{1}{2n}\int_0^{\pi} \sin^2(u) \ du = \frac{1}{2}\int_0^{\pi} \sin^2(u) \ du = \frac{1}{2}$ $\frac{1}{2} \int_0^{\pi} \frac{1}{2}$ $\frac{l}{2} - \frac{\cos(2u)}{2}$ $\int_0^{\pi} \frac{l}{2} - \frac{\cos(2u)}{2} du = \frac{l}{2}$ $rac{1}{2}$ $\left[\frac{u}{2}\right]$ $\frac{u}{2} - \left(\frac{\sin(2u)}{2 \cdot 2}\right)$ $\frac{a(2u)}{2\cdot2}\Big)\Big|_0$ π = 1 $\frac{1}{2}$ π $\frac{1}{2}$ θ $\frac{1}{2}$ – $\left(\frac{1}{2}\right)$ $sin(2\pi)$ $\frac{(-1)}{4}$ $sin(\theta)$ $\left(\frac{1}{4}\right)$ = 1 $\frac{1}{2}$. π $\frac{1}{2}$ π 4

B.

- 22. Define the *nth* triangular number, T_n , as $\frac{n(n+1)}{2}$. $\frac{1}{2}$. Thus, the series we must evaluate is $\sum_{n=1}^{\infty} \frac{1}{n}$ T_n $\sum_{n=1}^{\infty} \frac{1}{T_n} = \sum_{n=1}^{\infty} \frac{2}{n(n+1)}$ $n(n+1)$ $\sum_{n=1}^{\infty} \frac{2}{n(n+1)} = 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ $n(n+1)$ $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 2 \sum_{n=1}^{\infty} \left(\frac{1}{n} \right)$ $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 2 \cdot \left(\frac{1}{n} \right)$ $\frac{l}{l} - \frac{l}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{3} + \frac{1}{3}$ $rac{1}{3}$ – 1 $(\frac{1}{4} + ...) = 2 \cdot \frac{1}{1}$ $\frac{1}{1} = 2$ B
- 23. $\lim_{n\to\infty}\sum_{k=2n}^{8n} \frac{1}{k \cdot (\ln(k))}$ $k \cdot (\ln(k) - \ln(n))$ $\sum_{k=2n}^{8n} \frac{1}{k \cdot (\ln(k) - \ln(n))} = \lim_{n \to \infty} \sum_{k=2n}^{8n} \frac{1}{k \cdot \ln(n)}$ $k \cdot \ln\left(\frac{k}{n}\right)$ $\frac{n}{n}$ $\sum_{k=2n}^{8n} \frac{1}{k \cdot \ln\left(\frac{k}{n}\right)} = \lim_{n \to \infty} \sum_{k=1}^{8}$ 1 $\frac{n}{k}$ $\frac{k}{n}$ ln $\left(\frac{k}{n}\right)$ $\frac{n}{n}$ $\sum_{k=2n}^{8n} \frac{\overline{n}}{k \ln(k)} =$ $\lim_{n\to\infty}\sum_{k=2n}^{8n}\frac{1}{n}$ $\frac{1}{n} \cdot \frac{1}{\underline{k} \cdot \underline{l} \cdot \underline{n}}$ $\frac{k}{n}$ ·ln($\frac{k}{n}$) n $n¹$ $\frac{\delta n}{\delta k} = 2n \frac{I}{n} \cdot \frac{I}{k I n f k} = S$. Interpreting S as a Riemann Sum representing an integral, S = $\int_{2}^{8} \frac{1}{x \ln x}$ $\int_{2}^{8} \frac{1}{x \cdot ln(x)} dx$. $u = ln(x)$, $du = \frac{dx}{x}$ $\frac{dx}{x}$. $S = \int_{ln(2)}^{ln(8)} \frac{du}{u}$ $\boldsymbol{\mathcal{u}}$ $\lim_{n \to \infty} \frac{du}{u} = \left[ln(u) \right]_{ln(2)}^{ln(8)} = ln(ln(8))$ $ln(ln(2)) = ln(\frac{ln(8)}{ln(2))}$ $\frac{u(0)}{ln(2)}$ $= ln($ $3 \cdot ln(2)$ $\frac{ln(2)}{ln(2)} = ln(3)$

A.

- 24. $f(x) = 2x + \frac{2}{3}$ $\frac{2}{3}x^3 + \frac{6}{5}$ $\frac{6}{5}x^5 + \frac{6}{7}$ $\frac{6}{7}x^7 + \frac{10}{9}$ $\frac{10}{9}x^9 + \frac{10}{11}$ $\frac{10}{11}x^{11} + \ldots = (1 + 1)x + (1 - \frac{1}{3})$ $\frac{1}{3}$) $x^3 + (1 +$ 1 $\frac{1}{5}$) $x^5 + (1 - \frac{1}{7})$ $\frac{1}{7}$) x^7 +... $=(x + x³ + x⁵ + x⁷ + ...) + (x - \frac{1}{3})$ $\frac{1}{3}x^3 + \frac{1}{5}$ $\frac{1}{5}x^5 - \frac{1}{7}$ $\frac{1}{7}x^7 + ...$). The first term of this sum is an infinite geometric series with first term x and common ratio x^2 , while the second term is the Taylor Series for $arctan(x)$. Therefore, $f(x) = \frac{x}{1-x^2} + arctan(x)$. $f(\frac{\sqrt{3}}{3})$ $\frac{3}{3}$) = √3 3 $\frac{\frac{1}{3}}{1-\frac{\sqrt{3}}{2}}+arctan(\frac{\sqrt{3}}{3})$ 3 $\frac{\sqrt{3}}{3}$) = $\frac{\frac{\sqrt{3}}{3}}{1-\frac{3}{3}}$ 3 $1-\frac{1}{2}$ 3 $+\frac{\pi}{4}$ $\frac{\pi}{6} = \frac{\sqrt{3}}{3}$ $\frac{\sqrt{3}}{3} \cdot \frac{3}{2}$ $\frac{3}{2} + \frac{\pi}{6}$ $\frac{\pi}{6} = \frac{3\sqrt{3}+\pi}{6}$ 6 C.
- 25. Multiply a_n by $\frac{e^{-n}}{e^{-n}} = 1$ to obtain $a_n = \frac{e^{-n}2^n + e^{-n}e^{n-1}}{e^{-n}n^{20/9} + e^{-n}2^n + e^{-n}}$ $\frac{e^{-n}2^{n} + e^{-n}e^{n-1}}{e^{-n}n^{20/9} + e^{-n}2^{n} + e^{-n}e^{n}} = \frac{(2/e)^{n} + e^{-1}}{e^{-n}n^{20/9} + (\frac{2}{e})^{n}}$ $\frac{(2/e)^2 + e^2}{(e^2)^n + (e^2)^n + 1}$. Thus, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(2/e)^n + e^{-1}}{e^{-n}n^{2019} + (\frac{2}{e})^n + (e^{-n}n^{2019})}$ $\frac{(2/e)^n + e^{-1}}{e^{-n}n^{2019} + (\frac{2}{e})^n + 1} = \frac{\lim_{n \to \infty} [(2/e)^n] + e^{-1}}{\lim_{n \to \infty} [e^{-n}n^{2019} + (2/e)^n]}$ e^{\cdot} $\frac{\lim_{n\to\infty}[(2/e)^n]+e^{-t}}{\lim_{n\to\infty}[e^{-n}n^{2019}+(2/e)^n]+1} = \frac{0+e^{-1}}{(0+0)+1}$ $\frac{0+e^{-t}}{(0+0)+1} = e^{-1}.$ B.
- 26. First, the ball travels down by 5. Then, it bounces back up to 3, then down 3, then up $3 \cdot$ 3 $\frac{3}{5} = \frac{9}{5}$ $\frac{9}{5}$, then down $\frac{9}{5}$, and so on. Thus, The total distance travelled by the ball is 5 + $2(3) + 2(\frac{9}{5})$ $\frac{9}{5}$) + 2($\frac{27}{25}$ $\frac{27}{25}$ + ... = 5 + 2(3 + $\frac{9}{5}$ + $\frac{27}{5}$ + ...) = 5 + 2($\frac{3}{1-3}$ $\frac{3}{1-3/5}$ $= 5 + 2(\frac{3}{24})$ $\frac{3}{2/5}$) = 5 + 2($\frac{15}{2}$) $\frac{15}{2}$) = 5 + 15 = 20. E

27. Generally, the Taylor Series of $sin(z)$ about 0 is: $sin(z) = z - \frac{z^3}{3!}$ $rac{z^3}{3!} + \frac{z^5}{5!}$ $\frac{z^3}{5!} - \ldots =$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^n z^{2n+1}}{(2n+1)!}$. Plugging in $z = x$ and multiplying by x yields $x \cdot \sin(x) =$ $\chi \sum_{n=0}^{\infty}$ $\frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty}$ $(-1)^n x^{2n+2}$ $(2n+1)!$ A.

28. Generally, the Taylor Series of $sin(z)$ about 0 is: $sin(z) = z - \frac{z^3}{3!}$ $rac{z^3}{3!} + \frac{z^5}{5!}$ $\frac{z^3}{5!}$ -... = $\sum_{n=0}^{\infty}$ $\frac{(-1)^n z^{2n+1}}{(2n+1)!}$. Plugging in $z = 2x^2$ and dividing by 2 yields $\frac{\sin(2x^2)}{2}$ $\frac{2x}{2} =$ $\sum_{n=0}^{\infty}$ $\frac{(-1)^n (2x^2)^{2n+1}}{2 \cdot (2n+1)!} = \sum_{n=0}^{\infty}$ $(-1)^n 2^{2n} \cdot x^{4n+2}$ $(2n+1)!$ D.

29.
$$
\lim_{n \to \infty} \sum_{x=0}^{n} \sqrt{\frac{x^2}{n^4} - \frac{x^4}{n^6}} = \lim_{n \to \infty} \sum_{x=0}^{n} \frac{1}{n} \cdot \frac{x}{n} \cdot \sqrt{1 - \frac{x^2}{n^2}} = S.
$$
 Interpreting *S* as a Riemann Sum, $\frac{1}{n} = dy$, $\frac{x}{n} = y$, $S = \int_0^1 y \cdot \sqrt{1 - y^2} dy$. Perform a u substitution, $u = (1 - y^2)$, $du = -2y dy$. $S = \int_1^0 \frac{\sqrt{u}}{-2} du = \int_0^1 \frac{\sqrt{u}}{2} du = [\frac{2}{3} \cdot \frac{u^{3/2}}{2}]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}$
A.

30. If
$$
n = 0
$$
, then $A_n = \int_0^{\pi} \sin(nx) dx = \int_0^{\pi} \sin(0) dx = \int_0^{\pi} 0 dx = 0$.
\nOtherwise, $A_n = \int_0^{\pi} \sin(nx) dx = [-\frac{\cos(nx)}{n}]_0^{\pi} = -\frac{\cos(n\pi)}{n} - (-\frac{1}{n}) = \frac{-\cos(n\pi) + 1}{n}$. If n is even, $\cos(n\pi) = 1$, $A_n = \frac{-1+1}{n} = 0$. If n is odd, $\cos(n\pi) = -1$, $A_n = \frac{-(-1)+1}{n} = \frac{2}{n}$.
\nThus, $\sum_{n=0}^{\infty} A_n = 0 + \frac{2}{1} + 0 + \frac{2}{3} + 0 + \frac{2}{5} + \dots$. This is a Harmonic Series (the denominators are an arithmetic series), and therefore this sum diverges D.