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Solutions:  

1. It is well known that 
  

 =  𝑎 +  𝑎𝑟 +  𝑎𝑟  + . .. for all −∞ <  𝑎 <  ∞, −1 <  𝑟 <  1. if 𝑟 

is outside of this range, then either 𝑟 = 1, in which case  is undefined and 𝑎 +  𝑎𝑟 +

 𝑎𝑟  + . .. diverges, or 𝑟 ≠ 1, in which case  is some real number, and the righthand 

side diverges.  

Thus, in our case, 𝑟 =  9𝑥, so −1 <  9𝑥 <  1. Dividing by 9 yields  <  𝑥 <  . 

D 

2. Let 𝑎  =  
( )  

. Perform the ratio test on this sequence: 𝑙𝑖𝑚
→

 =
( )  

⋅

(−1)𝑘⋅𝑥2
 =  −𝑒  =  𝑟. Clearly, −1 <  𝑟 <  1. Thus, this series converges for any 𝑥. 

Note: The series ∑
( )∞

  0  converges, so multiplying it by 𝑥2 will multiply the sum by 

a constant without changing convergence. 
D 

3. 12 12√12. . . = 12 / ⋅ (12 / ) / ⋅ ((12 / ) / ) / . . . = 12 ( ) ( ) ... = 12
/

( / ) =

12
/

/ = 12 / = 2√3 
B 
 

4. 12 + 12 + √12 + ⋯ = 𝑥 = √12 + 𝑥  →  𝑥2 = 12 + 𝑥 →  0 = 𝑥2 − 𝑥 − 12 = 

(𝑥 − 4)(𝑥 + 3) 
 

Because 𝑥 is a square root of a sum of positive numbers, 𝑥 > 0 →  𝑥 = 4. 
D 
 
 
 

5. Let us consider each of I, II, and III separately. 
 
I: 

Consider the sequence 𝑎 = ( , − , , − , . . . ). It is well known that ∑ 𝑎 = 𝑙𝑛(2). 

However, consider the sequence 𝑏  for which 𝑏 = 𝑎 . Since every element in sequence 

𝑏  is also in 𝑎 , 𝑏  is a subsequence of 𝑎 . However, ∑ 𝑏 = − − − −. . . =

− + + +. . . . Since the latter series diverges, ∑ 𝑏  also diverges. However, 

∑ 𝑎  converges. Therefore, (I) need not be true. 
 
II: 

Consider the sequence 𝑎 =
( )

√
. Clearly, |𝑎 | is decreasing and 𝑙𝑖𝑚

→
𝑎 = 0. Thus, by 



 

the Alternating Series Test, ∑ 𝑎  converges. However, observe that 𝑎 =
( )

= . 

It is well known that ∑ = ∑ 𝑎  diverges. Therefore, (II) need not be true. 

III: 

Consider the sequence 𝑎 =
( )

. Clearly, |𝑎 | is decreasing, and 𝑙𝑖𝑚
→

𝑎 = 0. Thus, by 

the Alternating Series Test, ∑ 𝑎  converges. However, observe that |𝑎 | =
|( ) |

| |
= . 

It is well known that ∑ = ∑ |𝑎 | diverges. Therefore, (III) need not be true.  

 
Since none of (I, II, III) must be true, the answer is:  None 
E. 
 

6. The given limit is of the form of a Reimann Sum. In a Reimann Sum representing 

∫ 𝑓(𝑥)𝑑𝑥, the  term represents 𝑥, the operations performed on the  term represent 

𝑓(𝑥), the  term represents 𝑑𝑥, and the bounds of the sum represent the limits of 

integration (a finite number represents 0, 𝑛 represents 1, 2𝑛 represents 2, etc.).  
Using this information, 𝑓(𝑥) = (1 + 𝑥) , and the limits of integration are 0 and 3. 

∫ (1 + 𝑥)  𝑑𝑥 = [
( )

] = − = = . 

D 

7. 𝑒 = ∑
!
 implies that 3 = 𝑒 ( )⋅ = ∑

(𝑙𝑛(3)⋅𝑥)𝑘

𝑘!
∞
𝑘=0 . 

D. 

8. Call the given sum 𝑆 = ∑   = + + + +. ... Dividing by 4 gives = + +

+. ... Subtracting the two previous equations yields = + + + +. ... Dividing 

by 4 gives = + + +. ... Subtracting the two previous equations yields ( −

) = = + + + +. . . = − + ( + + +. . . ) = − +
/

= − + = − +  

= = =  ⇒  𝑆 = ⋅ = . 

B 

9. First, notice that ∑
( )

⋅   is completely symmetric about 𝑥 = 4 because the only 

term involving 𝑥 − 4 is raised to 2𝑛, an even power. Therefore, a number 𝑟 is within the 
interval of convergence if and only if 4 − (𝑟 − 4) = 8 − 𝑟 is also within the interval of 
convergence. 
  
In order to determine the interval of convergence, let us use the ratio test. Calling the 

sequence 𝑎 , we have 𝑙𝑖𝑚
→

! = 𝑙𝑖𝑚
→

(𝑥−4)2(𝑛+1)

(𝑛+1)⋅4𝑛+1 /
(𝑥−4)2𝑛

𝑛⋅4𝑛 = 𝑙𝑖𝑚
𝑛→∞

(𝑥−4)2(𝑛+1)⋅𝑛⋅4𝑛

(𝑛+1)⋅4𝑛+1⋅(𝑥−4)2𝑛 =

𝑙𝑖𝑚
𝑛→∞

(𝑥−4)2

4
. Thus, if 𝑙𝑖𝑚

→∞

( 4)2

4
< 1, the series converges, and if 𝑙𝑖𝑚

→∞

( 4)2

4
> 1, the series 

diverges. From this fact and from the symmetry about 𝑥 = 4, the interval of convergence 



 

must be either (2, 6) or [2, 6], depending on whether the series converges at 𝑥 = 6,2. 

Plugging in 𝑥 = 6, the given series is ∑
⋅

= ∑ , which diverges. Thus, the 

interval of convergence is (2, 6) 
A. 

10. The motivation behind this solution is the intuition that the graph of 𝑓(𝑥) = 𝑒−𝑥|𝑠𝑖𝑛(𝑥)| 

has periodic “humps” with a period of 𝜋, the same period as |𝑠𝑖𝑛(𝑥)|. The area of these 
humps can be calculated using a geometric series. 
 
More rigorously: 
|𝑠𝑖𝑛(𝑥 + 𝜋)| = |𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠(𝜋) + 𝑠𝑖𝑛(𝜋)𝑐𝑜𝑠(𝑥)| = | − 𝑠𝑖𝑛(𝑥)| = |𝑠𝑖𝑛(𝑥)|.  
Call 𝑓(𝑥) = 𝑒−𝑥|𝑠𝑖𝑛(𝑥)|. 𝑓(𝑥 + 𝜋) = 𝑒−𝑥−𝜋|𝑠𝑖𝑛(𝑥 + 𝜋)| = 𝑒−𝜋 ⋅ 𝑒−𝑥|𝑠𝑖𝑛(𝑥)| = 𝑒−𝜋𝑓(𝑥). 

The question asks to evaluate ∫ (𝑒
−𝑥

|𝑠𝑖𝑛(𝑥)|) 𝑑𝑥. We can “split” this integral into 

intervals of width 𝜋 by rewriting the integral as ∑ [∫ (𝑒
−𝑥

|𝑠𝑖𝑛(𝑥)|) 𝑑𝑥
( )

]. 

Additionally, using previously obtained information, ∫ 𝑓(𝑥) 𝑑𝑥
( )

= ∫ 𝑓(𝑥 +
( )

𝜋) 𝑑𝑥 = ∫ 𝑒 𝑓(𝑥) 𝑑𝑥
( )

=  𝑒−𝜋 ⋅ ∫ 𝑓(𝑥) 𝑑𝑥
( )

. Thus, the area of each interval is 

𝑒  times the area of the previous integral. Therefore, ∑ ∫ (𝑒
−𝑥

|𝑠𝑖𝑛(𝑥)|) 𝑑𝑥
( )

=

∫ 𝑒−𝑥|𝑠𝑖𝑛(𝑥)|) 𝑑𝑥
𝜋
0

1−𝑒−𝑥 .  

Evaluate ∫ (𝑒 |𝑠𝑖𝑛(𝑥)|) 𝑑𝑥
0

= ∫ 𝑒 ⋅ 𝑠𝑖𝑛(𝑥) 𝑑𝑥
0

 by using integration by parts: 

𝑒 ⋅ 𝑠𝑖𝑛(𝑥) 𝑑𝑥
0

= [−𝑒 𝑠𝑖𝑛(𝑥)]0 − −𝑒 ⋅ 𝑐𝑜𝑠(𝑥) 𝑑𝑥
0

= (0 − 0) + {[−𝑒 𝑐𝑜𝑠(𝑥)]0 − −𝑒 ⋅ −𝑠𝑖𝑛(𝑥) 𝑑𝑥
0

} 

= (−𝑒 ⋅ (−1) − (−1) ⋅ 1) − 𝑒−𝑥 ⋅ 𝑠𝑖𝑛(𝑥) 𝑑𝑥
𝜋

0
 ⇒  2 𝑒−𝑥 ⋅ 𝑠𝑖𝑛(𝑥) 𝑑𝑥

𝜋

0
= 𝑒−𝜋 + 1 

⇒  𝑒−𝑥 ⋅ 𝑠𝑖𝑛(𝑥) 𝑑𝑥
𝜋

0
=

𝑒−𝜋 + 1
2

 

Therefore, ∫ (𝑒
−𝑥

|𝑠𝑖𝑛(𝑥)|) 𝑑𝑥 =
𝑒−𝜋+1

2

1−𝑒−𝜋 =
𝑒−𝜋+1

2(1−𝑒−𝜋)
⋅

𝑒𝜋

𝑒𝜋 =
𝑒𝜋+1

2(𝑒𝜋−1)
 

C. 

11. Ben: ∫ 𝑒 𝑑𝑥 = [𝑒 ] = 𝑒 − 1 = 𝐵. 

Zhao: Each interval has width = 3. Thus, ⋅ 3 + ⋅ 3 = + 3𝑒 + 𝑒 = 𝑍. 

𝑍 − 𝐵 = + 3𝑒 + 𝑒 − (𝑒 − 1) = + 3𝑒 + 𝑒 . 

B. 

12. Generally, the Taylor expansion about 𝑥 = 𝑎 for 𝑓(𝑥) = 𝑒  is ∑ 𝑒
( )

!
. Thus, the 

2nd degree approximations that each person uses are as follows: 

Jonathan: 
!
+

!
+

!
= 1 + 𝑥 + 𝑥  

Henrik: 𝑒 (
!
+

( )

!
+

( )

!
) 



 

Defining J as the integral that Jonathan calculates and H as the integral Henrik 
calculates: 

𝐽 = ∫ (1 + 𝑥 + 𝑥 )𝑑𝑥 = [𝑥 + + ] = 6 + 18 + 36 = 60. 

𝐻 = ∫ 𝑒 (1 + +
( )

)𝑑𝑥 = 𝑒 [𝑥 +
( )

+
( )

] = 𝑒 (6 + 0 + 0 − (0 + 18 −

36)) = 24𝑒 . 
To answer whose approximation is more accurate, we compare each approximation to 
the actual integral, which we determined in Question 10 to be 𝑒 − 1 = 𝐼. 
|𝐽 − 𝐼| = |𝑒 − 1 − 60| = |𝑒 − 61|.    3 > 𝑒 = 2.7. . . > 2 ⇒ 3 = 729 > 𝑒 > 64 = 2 . 
Therefore, 668 > |𝑒 − 61| > 3. 
|𝐻 − 𝐼| = |𝑒 − 1 − 24𝑒 | = |23𝑒 + 1|.    𝑒 > 64. Therefore, |23𝑒 + 1| > 1473 = 23 ⋅

64 + 1. Therefore, Jonathan’s integral approximation is more accurate.  
Additionally, the difference between the two approximations is 24𝑒 − 60 
C. 

13. Factoring the bottom polynomial gives 
1

3 10 2 19 30
=

1

( 5)( 1)( 6)
=

1

( 5)( 6)
. 

Now, using partial fraction decomposition, 
1

( 5)( 6)
=

( 5)
+

( 6)
. 𝐴(𝑛 + 6) + 𝐵(𝑛 +

5) = 1 ⇒ 𝐴 + 𝐵 = 0, 6𝐴 + 5𝐵 = 1 ⇒  𝐴 = 1, 𝐵 = −1. Thus, the given series is 

∑ ( − ) = ( − ) + ( − ) + ( − )+. . . = + (− + ) + (− + )+. . . =

 

A. 

14. Let 𝑥 = 2 +
...

,    𝑥 = 2 +  →  𝑥 − 2 − = 0 = 𝑥 − 2𝑥 − 3 = (𝑥 − 3)(𝑥 + 1). Because 

the given continued fraction contains only positive numbers being summed or divided, 
𝑥 > 0 → 𝑥 = 3 
C. 

15. Write the sum as ∑
( )

!  = ∑
!

+
!

+
!

= ∑
!

+ ∑
!

+ ∑
!
. 

∑
!

= 4 ∑
!

= 4𝑒. 

∑
!

= 0 + ∑
( )!

= 4 ∑
( )!

= 4 ∑
!

= 4𝑒. 

𝑛

𝑛!
= 0 +

𝑛

(𝑛 − 1)!
=

𝑛 − 1

(𝑛 − 1)!
+

1

(𝑛 − 1)!
= (0 +

𝑛 − 1

(𝑛 − 1)!
) +

1

𝑛!

= (
1

(𝑛 − 2)!
) + 𝑒 = (

1

𝑛!
) + 𝑒 = 𝑒 + 𝑒 = 2𝑒 

Therefore, ∑
( )

!

∞
  0 = 4𝑒 + 4𝑒 + 2𝑒 = 10𝑒 

D. 
16. Evaluate each case: 

I: 
Use the integral test for this series. The corresponding integral to this series is 



 

∫
1

⋅ ( )
𝑑𝑥

∞

2
. Perform a u substitution, with 𝑢 = 𝑙𝑛(𝑥), 𝑑𝑢 = , then ∫

1

⋅ ( )
𝑑𝑥

∞

2
=

∫
∞

(2)
= [𝑙𝑛(𝑢)] (2)

∞ . At 𝑢 = ∞, 𝑙𝑛(𝑢) is infinite, so the integral diverges. The Integral 

Test Implies that the given series also diverges. 
II: 
Notice that for positive 𝑛, 𝑛 > 𝑛! = 𝑛 ⋅ (𝑛 − 1) ⋅. . .⋅ 1. Therefore, for positive n, 

𝑙𝑛(𝑛 ) = 𝑛 ⋅ 𝑙𝑛(𝑛) > 𝑙𝑛(𝑛!), and thus 
1

⋅ ( )
<

1

( !)
. Therefore, ∑

1

⋅ ( )

∞
2 <

∑
1

( !)

∞
2 . From part I of this question, we know that ∑

1

⋅ ( )

∞
2  diverges. By the 

Direct Comparison Test, ∑
1

( !)

∞
2  also diverges. 

III: 

∑
1

( )

∞
  2 = ∑

1

𝑒𝑙𝑛(𝑙𝑛(𝑛)𝑛)

∞
  2 = ∑

1

𝑒𝑛⋅𝑙𝑛(𝑙𝑛(𝑛))

∞
  2 . 

Define 𝑎 =
1

𝑒𝑛⋅𝑙𝑛(𝑙𝑛(𝑛))
.  

𝑙𝑖𝑚
→∞

𝑎 1

𝑎
= 𝑙𝑖𝑚

→∞

1
𝑒(𝑛+1)⋅𝑙𝑛(𝑙𝑛(𝑛+1))

1
𝑒𝑛⋅𝑙𝑛(𝑙𝑛(𝑛))

= 𝑙𝑖𝑚
→∞

𝑒 ⋅ ( ( ))

𝑒(𝑛+1)⋅𝑙𝑛(𝑙𝑛(𝑛+1))

= 𝑙𝑖𝑚
→∞

𝑒 ⋅ ( ( ))

𝑒𝑛⋅𝑙𝑛(𝑙𝑛(𝑛+1)
⋅

1

𝑒 ( ( 1))
= 𝑙𝑖𝑚

→∞
(

𝑒 ( ( ))

𝑒𝑙𝑛(𝑙𝑛(𝑛+1)
) ⋅

1

𝑙𝑛(𝑛 + 1)
 

= 𝑙𝑖𝑚
→∞

(
( )

𝑙𝑛(𝑛+1)
) ⋅

1

( 1)
. 𝑙𝑛(𝑛) < 𝑙𝑛(𝑛 + 1). 𝑙𝑖𝑚

→∞

1

( 1)
= 0. Therefore, 𝑙𝑖𝑚

→∞

1 =

0, and by the Ratio Test, ∑
1

( )

∞
  2  converges. 

B. 

17. Write 𝑓(𝑥) as 𝑔(𝑥) ⋅ ℎ(𝑥), where 𝑔(𝑥) = 𝑒 , ℎ(𝑥) =
1 2. Consider 

1 2to be an infinite 

geometric series with 𝑎 = 𝑥  𝑎𝑛𝑑  𝑟 = 𝑥2. Thus, 
1 2 = (𝑥)(1 + 𝑥2 + 𝑥4+. . . ). 

Additionally, 𝑒 = 1 + 𝑥 +
2

2!
+. ... Therefore, 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) = (1 + 𝑥 +

2

2!
+

3

3!
. . . )(𝑥)(1 + 𝑥2 + 𝑥4+. . . ) = 𝑥(1 + 𝑥 + (1 +

1

2!
)𝑥2 + (1 +

1

3!
)𝑥3 + (1 +

1

2!
+

1

4!
)𝑥4+. . . ). 

The 4th degree Maclaurin Series Approx. is therefore 𝑀4(𝑥) = 𝑥 + 𝑥2 + (1 +
1

2!
)𝑥3 +

(1 +
1

3!
)𝑥4 = 𝑥 + 𝑥2 +

3

2
𝑥3 +

7

6
𝑥4. 𝑀4(1) = 1 + 12 +

3

2
13 +

7

6
14 =

6 6 9 7

6
=

28

6
=

14

3
 

B. 

18. This series is of the form ∑∞
1 , for which 𝑥 = −

1

2
. If we consider this series to be a 

function 𝑓(𝑥) = 𝑥 +
2

2
+

3

3
+. .. evaluated at 𝑥 = −

1

2
, we can differentiate each term to 

obtain 𝑓′(𝑥) = 1 + 𝑥 + 𝑥2+. . . +𝑥 +. ... For 𝑥 ∈ (−1, 1), 𝑓′(𝑥) is a geometric series with 

first term 1 and common ratio 𝑥, which implies 𝑓′(𝑥) =
1

1
= . Thus, 𝑓 = ∫

1
=



 

 −𝑙𝑛|1 − 𝑥| + 𝐶. To determine 𝐶, evaluate 𝑓(0) = 0 +
02

2
+

03

3
+. . . = 0 = −𝑙𝑛|1 − 0| +

𝐶 = 0 + 𝐶 = 𝐶 = 0. Therefore, the answer is 𝑓(−
1

2
) = −𝑙𝑛|1 +

1

2
| = −𝑙𝑛(

3

2
) = 𝑙𝑛(

2

3
). 

B. 
19. Notice that the denominator may be factored as 𝑥2 + 7𝑥 + 12 = (𝑥 + 3)(𝑥 + 4). Use 

partial fraction decomposition to obtain 
1

( 3)( 4)
=

1

3
−

1

4
. Thus, our sum is 

∑ [
1

3
−

1

4
]20

  0  =  (
1

3
 −  

1

4
)  +  (

1

4
 −  

1

5
)  +  (

1

5
 −  

1

6
) + . . . + (

1

22
 −  

1

23
) +  (

1

23
 −  

1

24
) 

=
1

3
 +  (−

1

4
 +  

1

4
)  +  (−

1

5
 +  

1

5
) + . . . + (−

1

23
 +  

1

23
)  +  (−

1

24
)  =  

1

3
 −  

1

24
 

=  
8 −  1

24
 =  

7

24
. 

A 
 

20. Rewrite 𝑎  as 𝑎 =
( ) / /

. Now, rationalize the numerator of 𝑎 , as follows: 𝑎 =

( ) / /

⋅
( )( )/ ( )( )/ / ( )( )/ / ... ( ) / ( )/ ( ) ( )/

( )( )/ ( )( )/ / ( )( )/ / ... ( ) / ( )/ ( ) ( )/  

=
(𝑥 + 1) −  𝑥

(𝑥 + 1)( )/ 𝑥 + (𝑥 + 1)( )/ 𝑥 / + (𝑥 + 1)( )/ 𝑥 / +. . . +(𝑥 + 1) / 𝑥( )/ + (𝑥 + 1) 𝑥( )/

=
1

(𝑥 + 1)( )/ 𝑥 + (𝑥 + 1)( )/ 𝑥 / + (𝑥 + 1)( )/ 𝑥 / +. . . +(𝑥 + 1) / 𝑥( )/ + (𝑥 + 1) 𝑥( )/
 

In the Question, we are told to evaluate ∑ 𝑎 (1). Let us write 𝑎 (1) as 𝑎 (1) =

( )( )/ ( )( )/ / ( )( )/ / ... ( ) / ( )/ ( ) ( )/  

= ( )/ ( )/ ( )/ ... / . Written in this form, we can see that the denominator 

has 𝑖 terms being summed, all of which are positive, and less than 2 = 2. This implies 

that 
( )

< 2 ⋅ 𝑖, for all positive 𝑖. Therefore, 𝑎 (1) > .  

Additionally, ∑ = ∑ , which diverges (Harmonic Series). Therefore, ∑ 𝑎 (1) 

diverges.  
E 

21. 𝐴 , the area of one petal, is the area under the polar curve from two consecutive instances 
of 𝑠𝑖𝑛(𝑛𝜃) = 0. The 2 lowest positive values for which 𝑠𝑖𝑛(𝑛𝜃) = 0 are 𝑛𝜃 = 0, 𝜋. 

Thus, 𝐴 =
1

2
∫ 𝑟2 𝑑𝜃

/

0
=

1

2
∫ 𝑠𝑖𝑛2(𝑛𝜃) 𝑑𝜃

/

0
. Using u substitution, 𝑢 = 𝑛𝜃,   𝑑𝑢 =

𝑛 𝑑𝜃,    𝐴 =
1

2
∫ 𝑠𝑖𝑛2(𝑢) 
0

=
1

2
∫ 𝑠𝑖𝑛2(𝑢) 𝑑𝑢
0

. Therefore, 𝑙𝑖𝑚
→∞

[𝑛 ⋅ 𝐴 ] = 𝑙𝑖𝑚
→∞

[𝑛 ⋅

1

2
∫ 𝑠𝑖𝑛2(𝑢) 𝑑𝑢
0

] =
1

2
∫ 𝑠𝑖𝑛2(𝑢) 𝑑𝑢
0

=
1

2
∫

1

2
−

(2 )

2
 𝑑𝑢

0
=

1

2 2
−

(2 )

2⋅2 0
 

=
1

2

𝜋

2
−
0

2
−

𝑠𝑖𝑛(2𝜋)

4
−

𝑠𝑖𝑛(0)

4
=

1

2
⋅

𝜋

2
=

𝜋

4
 

B. 



 

22. Define the 𝑛𝑡ℎ triangular number, 𝑇 , as 
( 1)

2
. Thus, the series we must evaluate is 

∑∞
1 = ∑

( )

∞
1 = 2∑

( )

∞
1 = 2∑ −∞

1 = 2 ⋅
1

1
−

1

2
+

1

2
−

1

3
+

1

3
−

1

4
+. . . = 2 ⋅

1

1
= 2 

B 

23. 𝑙𝑖𝑚
→∞

∑
1

⋅( ( ) ( ))
8

  2 = 𝑙𝑖𝑚
→∞

∑
1

⋅

8
  2 = 𝑙𝑖𝑚

→∞
∑

1

⋅

8
  2 = 

𝑙𝑖𝑚
→∞

∑
1

⋅
1

⋅ ( )

8
  2 = 𝑆. Interpreting 𝑆 as a Riemann Sum representing an integral, 𝑆 =

∫
1

⋅ ( )
𝑑𝑥

8

2
.    𝑢 = 𝑙𝑛(𝑥), 𝑑𝑢 = .    𝑆 = ∫

(8)

(2)
= [𝑙𝑛(𝑢)] (2)

(8)
= 𝑙𝑛(𝑙𝑛(8)) −

𝑙𝑛(𝑙𝑛(2)) = 𝑙𝑛(
(8)

(2)
) 

= 𝑙𝑛(
3 ⋅ 𝑙𝑛(2)

𝑙𝑛(2)
) = 𝑙𝑛(3) 

A. 

24. 𝑓(𝑥) = 2𝑥 +
2

3
𝑥3 +

6

5
𝑥5 +

6

7
𝑥7 +

10

9
𝑥9 +

10

11
𝑥11+. . . = (1 + 1)𝑥 + (1 −

1

3
)𝑥3 + (1 +

1

5
)𝑥5 + (1 −

1

7
)𝑥7+. .. 

= (𝑥 + 𝑥3 + 𝑥5 + 𝑥7+. . . ) + (𝑥 −
1

3
𝑥3 +

1

5
𝑥5 −

1

7
𝑥7+. . . ). The first term of this sum is 

an infinite geometric series with first term 𝑥 and common ratio 𝑥2, while the second term 

is the Taylor Series for 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥). Therefore, 𝑓(𝑥) =
1 2 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥).    𝑓(

√3

3
) =

√3
3

1 √3
3

2 + 𝑎𝑟𝑐𝑡𝑎𝑛(
√3

3
) =

√3
3

1
1
3

+
6

=
√3

3
⋅
3

2
+

6
=

3√3

6
 

C. 

25. Multiply 𝑎  by 𝑒−𝑛

𝑒−𝑛 = 1 to obtain 𝑎  =   
2     1

2019  2   
 =  

(2/ )   1

2019  (
2
)   1

. 

Thus, 𝑙𝑖𝑚
→∞

𝑎  =  𝑙𝑖𝑚
→∞

 
(2/ )   1

2019  (
2
)   1

 =   →∞
[(2/ ) ] 1

→∞
[ 2019  (2/ ) ]  1

 =  
0  1

(0  0)  1
 =  𝑒 1. 

B. 
26. First, the ball travels down by 5. Then, it bounces back up to 3, then down 3, then up 3 ⋅

3

5
=

9

5
, then down 

9

5
, and so on. Thus, The total distance travelled by the ball is 5 +

 2(3)  +  2(
9

5
)  +  2(

27

25
) + . . . =  5 +  2(3 +  

9

5
 +  

27

5
 + . . . )  =  5 +  2(

3

1  3/5
)  

=  5 +  2(
3

2/5
)  =  5 +  2(

15

2
)  =  5 +  15 =  20. 

E 



 

27. Generally, the Taylor Series of sin(𝑧) about 0 is: 𝑠𝑖𝑛(𝑧) = 𝑧 −
3

3!
+

5

5!
−. . . =

∑∞
0

( 1) 2 1

(2 1)!
. Plugging in 𝑧 = 𝑥 and multiplying by 𝑥 yields 𝑥 ⋅ 𝑠𝑖𝑛(𝑥) =

𝑥 ∑∞
0

( 1) 2 1

(2 1)!
= ∑∞

0
( 1)  2 2

(2 1)!
 

A. 

28. Generally, the Taylor Series of 𝑠𝑖𝑛(𝑧) about 0 is: 𝑠𝑖𝑛(𝑧) = 𝑧 −
3

3!
+

5

5!
−. . . =

∑∞
0

( 1) 2 1

(2 1)!
. Plugging in 𝑧 = 2𝑥2 and dividing by 2 yields 

(2 2)

2
=

∑∞
0

( 1) (2 2)2 1

2⋅(2 1)!
= ∑∞

0
( 1)  22 ⋅ 4 2

(2 1)!
 

D. 

29. 𝑙𝑖𝑚
→∞

∑   0

2

4 −
4

6 = 𝑙𝑖𝑚
→∞

∑   0
1

⋅ ⋅ 1 −
2

2 = 𝑆. Interpreting 𝑆 as a Riemann 

Sum, 
1

= 𝑑𝑦, = 𝑦,  𝑆 = ∫
1

0
𝑦 ⋅ 1 − 𝑦2𝑑𝑦. Perform a u substitution, 𝑢 = (1 −

𝑦2), 𝑑𝑢 = −2𝑦 𝑑𝑦. 𝑆 = ∫
0

1
√

2
𝑑𝑢 = ∫

1

0
√

2
𝑑𝑢 = [

2

3
⋅

3/2

2
]0
1 =

1

3
− 0 =

1

3
 

A. 

30. If 𝑛 = 0, then 𝐴 = ∫0 𝑠𝑖𝑛(𝑛𝑥)𝑑𝑥 = ∫0 𝑠𝑖𝑛(0)𝑑𝑥 = ∫0 0 𝑑𝑥 = 0. 

Otherwise, 𝐴 = ∫0 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥 = [−
( )

]0 = −
( )

− (−
1
) =

( ) 1
. If n 

is even, 𝑐𝑜𝑠(𝑛𝜋) = 1, 𝐴 =
1 1

= 0. If n is odd, 𝑐𝑜𝑠(𝑛𝜋) = −1, 𝐴 =
( 1) 1

=
2
. 

Thus, ∑∞
0 𝐴 = 0 +

2

1
+ 0 +

2

3
+ 0 +

2

5
+. ... This is a Harmonic Series (the 

denominators are an arithmetic series), and therefore this sum diverges 
D. 


