- 1. C
- 2. C
- 3. E
- 4. A
- 5. D
- 6. C
- 7. C
- 8. B
- 9. A
- 10. A
- 11. B
- 12. C
- 13. E
- 14. B
- 15. B
- 16. D
- 17. E
- 18. C
- 19. C
- 20. C
- 21. E
- 22. B
- 23. B
- 24. E
- 25. C
- 26. A
- 27. B
- 28. A
- 29. C
- 30. D

- 1. Using the fact that if a|b and a|c then a|jb+kc, can check each of the answer choices to see which one is divisible by 5. Assuming that 5|3x+y, we know that $5|3(x+4y)-3x+y \rightarrow 5|11y$ which is a contradiction. A similar process shows that $5 \nmid 7x + 6y, 2x + 5y$. We know that 5|6x + 9y since 5|6(x + 4y) 5(3y)|C|
- 2. 17^{-1} is equivalent to x if x satisfies the equivalence $17x \equiv 1 \mod 47$. Then by definition of mod, there exists n_1 such that $47n_1 = 17x 1$. Taking mod 17 of each side gives the equivalence $13n_1 \equiv -1 \mod 17$. Then $17n_2 = 13n_1 + 1$ and taking mod 13 gives $4n_2 \equiv 1 \mod 13$. Then $13n_3 = 4n_2 1$ and taking mod 4 gives $n_3 \equiv -1 \mod 4$. Thus $n_3 \equiv 3 \mod 4$ which gives $n_2 \equiv 10 \mod 13$ which gives $n_1 \equiv 13 \mod 17$ and finally $x \equiv 36 \mod 47$
- 3. This is famously known as a "taxicab number", the smallest of which is $1729 \boxed{E}$
- 4. The expansion of AB_{10} is 10a + b and similarly the expansion of BA_7 is 7b + a. Then $10a + b = 7b + a \rightarrow 3a = 2b$. Then since a and b are digits in base 7, the only possibilities for (a, b) are (2, 3) and (4, 6). Then the sum of AB_{10} is 23 + 46 = 69
- 5. If x is the number of Pokemon Ben has caught so far then

 $x \equiv 5 \bmod 16$ $x \equiv 4 \bmod 9$

 $x \equiv 3 \bmod 5$

Combining the first two equivalences gives the equation 16a + 5 = 9b + 4. Noticing that a = 5, b = 9 is a solution (or using Euclidean algorithm), this gives $x \equiv 85 \mod 144$. By the same process we combine mod 144 and mod 5, which gives $x \equiv 373 \mod 720$. Since there are only 802 Pokemon available, Ben must have caught 373 Pokemon \boxed{D}

- 6. After n dice rolls, the sum has equal probabilities of being $0, 1, ..., 5 \mod 6$. After that roll there is exactly one roll that will make the sum $0 \mod 6$. Thus the probability is $\frac{1}{6}$
- 7. $\phi(60) = 16$ (Euler's totient function) C
- 8. The Chicken McNugget Theorem states that the largest integer that cannot be represented by ax + by for non-negative integers x, y and relatively prime a, b is ab a b. So $c = 6 \cdot 7 6 7 = 29$. The sum of digits in c is 2 + 9 = 11

9. $x^2 + 2x + 32 \equiv x^2 + 2x - 3 \equiv (x+3)(x-1) \equiv 0 \mod 35$ This implies that we must have

$$(x+3)(x-1) \equiv 0 \bmod 5$$
$$(x+3)(x-1) \equiv 0 \bmod 7$$

Clearly the first equivalence gives the solutions $x \equiv 1, 2 \mod 5$ and the second gives the solutions $x \equiv 1, 4 \mod 7$. Combining the possibilities gives $x \equiv 1, 11, 22, 32 \mod 35$. Then the sum is $1 + 11 + 22 + 32 \equiv 31 \mod 35$

- 10. By principle of inclusion-exclusion, the number of integers is $\lfloor \frac{1500}{7} \rfloor + \lfloor \frac{1500}{11} \rfloor 2 \lfloor \frac{1500}{77} \rfloor = 312 \boxed{A}$
- 11. An integer that has 9 factors must either be in the form $p_1^2p_2^2$ or p^8 . The three smallest integers in this form are 2^23^2 , 2^25^2 , and 2^27^2
- 12. The number of zeros at the end of 2018! are limited by the power of 5 that divides into 2018!. Counting powers of 5 yields $\lfloor \frac{2018}{5} \rfloor + \lfloor \frac{2018}{25} \rfloor + \lfloor \frac{2018}{625} \rfloor + \lfloor \frac{2018}{625} \rfloor = 502 \boxed{C}$
- 13. Since $gcd(a,b) \cdot lcm(a,b) = ab$, then our product is $84 \cdot 126 = 10584$
- 14. Counting the pairs (m, n) gives $(2, 19), (7, 17), \ldots, (47, 1)$ which is 10 pairs in total B
- 15. The prime factorization of 3288 is $3288 = 2^3 \cdot 3 \cdot 137$. Then the sum of the factors of 3288 is $(2^0 + 2^1 + 2^2 + 2^3)(3^0 + 3^1)(137^0 + 137^1) = (15)(4)(138) = 8280 \boxed{B}$
- 16. Notice that the smallest possible product abc results from a=3, b=4, and c=5, which gives abc=60. We verify that the prime factors of 60 will always divide abc. For 3, notice that the quadratic residues modulo 3 are 0 and 1. Using casework we see that we can only have

$$a^2 \equiv 1 \pmod{3}, b^2 \equiv 0 \pmod{3}, c^2 \equiv 1 \pmod{3}$$

$$a^2 \equiv 0 \pmod{3}, b^2 \equiv 1 \pmod{3}, c^2 \equiv 1 \pmod{3}$$

$$a^2 \equiv 0 \pmod{3}, b^2 \equiv 0 \pmod{3}, c^2 \equiv 0 \pmod{3}$$

In each case we can conclude that 3|abc. Using similar logic for 4 and 5, we can show that 4|abc and 5|abc. Thus the largest such k such that k|abc is k = 60 |D|

17. Examining the equation modulo 8 we see that $n^2 \equiv 3 \pmod{8}$. Since 3 is not a quadratic residue of 8, there are no solutions to the equation. \boxed{E}

- 18. Since norm is multiplicative (this can be easily verified), N((5+3i)(6-2i)(2+i)) = N(5+3i)N(6-2i)N(2+i) = (34)(40)(5) = 6800 C
- 19. Since there exists γ such that $\gamma(1-5i)=\alpha$, we know that $N(\gamma)N(1-5i)=N(\alpha)\to \frac{N(\alpha)}{N(1-5i)}=N(\gamma)\in\mathbb{Z}$, which implies that $26|N(\alpha)|C$
- 20. Notice that 1, -1, i, -i are units. We eliminate answers by factoring.

$$2 = (1+i)(1-i)$$

$$41 = (5-4i)(5+4i)$$

$$1+5i = (1+i)(3+2i)$$

We must verify that 4+i is a prime. Assume for the sake of contradiction that $4+i=\alpha\beta$ for some non-units α, β . Then taking the norm of both sides we have $17 = N(\alpha)N(\beta)$. Then either $N(\alpha) = 1$ or $N(\beta) = 1$. This is a contradiction since neither α or β are units C

- 21. (I) is true since $N((a+bi)(c+di)) = N((ac-bd) + (ad+bc)i) = (ac-bd)^2 + (ad+bc)^2 = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 = (a^2+b^2)(c^2+d^2) = N(a+bi)N(c+di).$
 - (II) is false since the units of $\mathbb{Z}[i]$ are 1, -1, i, -i.
 - (III) is false, however the converse is clearly true. As a counterexample, N(1+2i)|N(1-2i)| but $1+2i \nmid 1-2i$.
 - (IV) is true. Suppose there exists non-units $\alpha = a + bi$ and $\beta = c + di$ such that $p = \alpha\beta$. Then we have $N(p) = p^2 = N(\alpha)N(\beta)$. Since neither α nor β are units, we must have $a^2 + b^2 = N(\alpha) = p = 4k + 3$. But this is clearly impossible since a sum of squares cannot be $3 \mod 4 |E|$
- 22. Since $n^3 + 7n^2 13n + 19 = (n-4)n^2 + (n-4)11n + (n-4)31 + 143$ (synthetic division), then $n-4|n^3+7n^2-13n+19 \rightarrow n-4|143$. Then $n-4=-1,1,11,13,143 \rightarrow n=3,5,15,17,147$. The sum of all possible values of n is 3+5+15+17+147=187
- 23. Using Euler's Totient Theorem, we know that $3^{72} \equiv 1 \mod 91$. Then $3^{391} \equiv (3^{72})^5 3^{31} \equiv 3^{31} \mod 91$. Then notice that,

$$3 \equiv 3 \mod 91$$

$$3^2 \equiv 9 \mod 91$$

$$3^4 \equiv -10 \mod 91$$

$$3^8 \equiv 9 \mod 91$$

$$3^{16} \equiv -10 \mod 91$$

$$3^{32} \equiv 9 \mod 91$$

 $3^{32} \equiv 9 \mod 91$ implies that $3^{31} \equiv 3 \mod 91$

24. From Vieta's formula we know that $p_1 + p_2 + p_3 = 40$. If all the primes were odd then $p_1 + p_2 + p_3$ would be odd. Thus one of the primes must be 2. WLOG, let $p_1 = 2$. Then $p_2 + p_3 = 38$. Counting all the possible unordered triplets of (p_1, p_2, p_3) gives (2, 7, 31) and (2, 19, 19). Then the sum of all possible values for $|c_2|$ is $2 \cdot 7 \cdot 31 + 2 \cdot 19 \cdot 19 = 1156$

25.
$$\lim_{n \to \infty} (\frac{a_{n+1}}{a_n} = \frac{a_n}{a_{n-1}}) \to$$

$$\frac{3a_n - a_{n-1}}{a_n} = \frac{a_n}{a_{n-1}}$$

$$a_{n-1}(3a_n - a_{n-1}) = a_n^2$$

$$a_n^2 - 3a_n a_{n-1} + a_{n-1}^2 = 0$$

$$(\frac{a_n}{a_{n-1}})^2 - 3\frac{a_n}{a_{n-1}} + 1 = 0$$

$$\frac{a_n}{a_{n-1}} = \frac{3 \pm \sqrt{5}}{2}$$

By inspection the ratio is clearly greater than 1 so the ratio must be $\frac{3+\sqrt{5}}{2}$ C

- 26. We can examine the equation by various mods to determine possible values for x. Taking mod 2 we see that $1^5 + 0^5 + 0^5 + x^5 \equiv 0^5 \mod 2 \to x \equiv 1 \mod 2$. Taking mod 3 we see that $0^5 + 0^5 + 2^5 + x^5 \equiv 0^5 \mod 3 \to x \equiv 1 \mod 3$. Taking mod 5 we see that $2^5 + (-1)^5 + 0^5 + x^5 \equiv (-1)^2 \mod 5 \to x \equiv 3 \mod 5$. Taking mod 7 we see that $(-1)^5 + 0^5 + (-2)^5 + x^5 \equiv 4^5 \mod 7 \to x \equiv 0 \mod 7$. These conditions are enough to narrow the answer down to $x \equiv 133 \mod 210$. We can computationally verify that 133 satisfies this equation A
- 27. Using Sophie-Germaine factorization,

$$4^{5} + 5^{4} = 5^{4} + 4 \cdot 4^{4}$$

$$= (5^{2} + 2 \cdot 5 \cdot 4 + 2 \cdot 4^{2})(5^{2} - 2 \cdot 5 \cdot 4 + 2 \cdot 4^{2})$$

$$= (25 + 40 + 32)(25 - 40 + 32)$$

$$= (97)(17)$$

Thus there are 2 prime factors of $5^4 + 4^5$ B

28. First note that $3 \nmid x$. Next we add 1 to both sides and factor, which gives

$$(x+1)(x^2 - x + 1) = 3^y$$

Let $x+1=3^a$ and $x^2-x+1=3^b$ where a+b=y and b>a. Then clearly $3^a|gcd(x-1,x^2+x+1)$ which is equivalent to $3^a|gcd(x-1,3x)$ since $(x+1)^2-(x^2-x+1)=3x$. Then clearly we must also have $3^a|3x$, but since $3\nmid x$, we can only have a=0,1. These give the only solutions (0,0),(2,2). Thus the sum is 0+0+2+2=4

- 29. Since $ab = k^2$ we can say $a = n_1^2 n_2$ and $b = n_2 n_3^2$. But $a b = n_1^2 n_2 n_2 n_3^2 = n_2 (n_1^2 n_3^2) = p$. Thus n_2 must be 1. Then $n_1^2 n_3^2 = (n_1 n_3)(n_1 + n_3) = p$. So $n_1 n_3 = 1$ and $n_1 + n_3 = p$. Then our possible pairs (a, b) are (4, 1), (9, 4), (16, 9), (36, 25), (49, 36). The sum of all such a is 4 + 9 + 16 + 36 + 49 = 114 \boxed{C}
- 30. Expanding gives

$$n^{2} - 4n + 4 - m^{2} + 4m - 4 = 2mn$$
$$n^{2} - 4n - 2mn - m^{2} + 4m = 0$$
$$n^{2} + n(-4 - 2m) - m^{2} + 4m = 0$$

Considering this as a quadratic equation in n gives

$$n = \frac{4 + 2m \pm \sqrt{(-4 - 2m)^2 - 4(-m^2 + 4m)}}{2}$$

$$= \frac{4 + 2m \pm \sqrt{4m^2 + 16m + 16 + 4m^2 - 16m}}{2}$$

$$= \frac{4 + 2m \pm 2\sqrt{2m^2 + 4}}{2}$$

Now since n must be an integer, this means that $\sqrt{2m^2+4}$ must be an integer. Then,

$$\sqrt{2m^2 + 4} = k \to k^2 - 2m^2 = 4$$

Notice that k must be even so using the substitution $k = 2k_1$ gives $2k_1^2 - m^2 = 2$. Then by the same logic m must also be even so using the substitution $m = 2m_1$ gives $k_1^2 - 2m_1^2 = 1$. This is a Pell's equation with base solution (3, 2), which gives the solution (m, n) = (4, 12). The next smallest solution (k_1, m_1) is given by

$$3^{2} - 2 \cdot 2^{2} = 1$$
$$(3 - 2\sqrt{2})(3 + 2\sqrt{2}) = 1$$
$$(3 - 2\sqrt{2})^{2}(3 + 2\sqrt{2})^{2} = 1^{2}$$
$$(17 - 12\sqrt{2})(17 + 12\sqrt{2}) = 1$$

Thus $(k_1, m_1) = (17, 12) \rightarrow (m, n) = (24, 60)$. Then, m + n = 24 + 60 = 84