

- 1. The focal width is the reciprocal of the coefficient of the y^2 term if the x-coefficient is 1. Multiply by 1/8 and the coefficient is 7/12.
- 2. All parabolas have an eccentricity of 1.
- 3. When $x = 0$, $v^2 + 4v = 4 \rightarrow v^2 + 4v + 4 = 8$ $\rightarrow (v+2)^2 = 8 \rightarrow v = -2 \pm 2\sqrt{2}$. The distance between the points is $4\sqrt{2}$.
- 4. Distance between center and line:

 $D = \frac{|1 - (-1)^{2} \cdot (1)^{2}|}{\sqrt{12^{2} + 9^{2}}}$ $\frac{12(2) + 9(1) + 14}{\sqrt{12^2 + 9^2}} = \frac{47}{15}.$ $=\frac{|12(2)+9(1)+14|}{\sqrt{2}}=\frac{4}{4}$ $^{+}$ Subtract 3,

the length of the radius: $\frac{47-45}{15} = \frac{2}{15}$. $\frac{-45}{1} = \frac{2}{1}$.

- 5. $xy 2y 5x + 7 = 0 \rightarrow xy 2y = 5x 7$ $y(x-2) = 5x - 7 \rightarrow y = \frac{5x - 7}{x - 2}$. At (-2) = 5x - 7 \rightarrow y = $\frac{5x-7}{x-2}$. After synthetic division, we have $y = \frac{3}{x-2} + 5$. $x = 2$, $y =$ $=\frac{3}{x-2}+5$. $x=2$, $y=5$.
- 6. Area = $ab\pi$ and focal width = $\frac{2b^2}{a}$ $=\frac{2b^2}{a}$. Substituting $b = \frac{18}{5}$ $\frac{16}{\pi}$ we get ଶ $\frac{2}{a} \left(\frac{324}{a^2} \right) = 3 \rightarrow a^3 = 216 \rightarrow a = 6$ The sum of the focal radii is $2a$, so 12.
- 7. The x-intercepts are 0 and 1, so the vertex will be at $x = \frac{1}{2}$. At $x = \frac{1}{2}$, $y = -\frac{1}{2}$. The rectangle has dimensions $1 \times \frac{1}{2}$, so the area is $\frac{1}{2}$.

8.
$$
m = \frac{7-2}{3-(-3)} = \frac{5}{6} \rightarrow m_1 = -\frac{6}{5}
$$
.
\n $y-7 = -\frac{6}{5}(x-3) \rightarrow 5y-35 = -6x+18$
\n $6x+5y-53 = 0$.
\n9. Let $y = a(x-1)(x-2)$. We know that (0, 6)
\nis on the graph, so $6 = a(0-1)(0-2) \rightarrow a = 3$.
\n $y = 3(x-1)(x-2) = 3x^2 - 9x + 6$. The sum is 0.
\n10. Let the rectangle have dimensions $2r \times x$.
\nThe length of the track is $2\pi r + 2x = 1320 \rightarrow$
\n $\pi r + x = 660$. Rectangle area = $2r(660 - \pi r)$
\n $\rightarrow -2\pi r^2 + 1320r \rightarrow r = -\frac{1320}{2(-2\pi)} = \frac{330}{\pi}$;
\n $x = 330$. Rectangle area = $2(\frac{330}{\pi})(330)$.
\n11. The center is (4, -3) and the *b*-value is 4, so
\nthe conjugate axis endpoints are (4, 1) and
\n(4 - 7) The distance between the endpoints

- 9. Let $y = a(x-1)(x-2)$. We know that (0, 6) is on the graph, so $6 = a(0 - 1)(0 - 2) \rightarrow a = 3$. $y = 3(x - 1)(x - 2) = 3x^2 - 9x + 6$. The sum is 0.
- 10. Let the rectangle have dimensions $2r \times x$. The length of the track is $2\pi r + 2x = 1320 \rightarrow$ $\pi r + x = 660$. Rectangle area = $2r(660 - \pi r)$

$$
\rightarrow -2\pi r^2 + 1320r \rightarrow r = -\frac{1320}{2(-2\pi)} = \frac{330}{\pi};
$$

x = 330. Rectangle area = $2\left(\frac{330}{\pi}\right)(330)$.

- 11. The center is $(4, -3)$ and the *b*-value is 4, so the conjugate axis endpoints are (4, 1) and (4, –7). The distance between the endpoints is 8. For the parabola, $4a = 8 \rightarrow a = 2$. The vertex has to be $(6, -3)$ or $(2, -3)$. The possible equations are $-8(x-6) = (y+3)^2$ and $8(x-2) = (y+3)^2$.
- 12. Confocal conics have the same focus. The two that are not confocal are $\frac{y^2}{4} - \frac{x^2}{8} = 1$ $\frac{x}{2}$ = 1 and $rac{x^2}{6} + \frac{y^2}{6} = 1.$ $+\frac{y}{f} = 1.$
- 13. The 42 million miles is between the focus and the vertex. For convenience, let $c > a$, giving $c-a = 42$. The focal width, $\frac{2b^2}{a}$ $\frac{2b^2}{\sqrt{2}}$, will be 224, so $\frac{b^2}{a}$ a $\stackrel{\text{2}}{=}$ =112. For hyperbolas, $a^2 + b^2 = c^2$, so $c^2 - a^2$ 112 $c^2 - (c - a^2)$ $\frac{a^2-a^2}{a}$ = 112 = $\frac{c^2-(c-42)^2}{c-42}$. $\frac{-a^2}{a} = 112 = \frac{c^2 - (c - 4)}{c - 42}$ $112(c - 42) = 84c - 1764 \rightarrow 28c = 2940 \rightarrow$ $c = 105 \rightarrow a = 63 \rightarrow 63 + 42 = 105.$
- 14. We want a circle with center (c, c) and radius c : $(x - c)^2 + (y - c)^2 = c^2$. Since the circle passes through (4, 4), we have $(4-c)^2 + (4-c)^2 = c^2$. $2(c^2 - 8c + 16) = c^2 \rightarrow$ r^2 $c^2 - 16c + 32 = 0.$ $c = \frac{16 \pm \sqrt{256 - 128}}{2} = 8 \pm 4\sqrt{2}.$ $=\frac{16\pm\sqrt{256-128}}{2}=8\pm4\sqrt{2}.$ Circumference= $2\pi r = 2\pi (8 - 4\sqrt{2}) =$ $16\pi - 8\pi\sqrt{2}$.
- 15. Let a and b be the two roots. Their product is $3072 = 3 \cdot 2^{10}$. $a - b = 244$. There are two possible choices for a and b : 12 and 256 and –12 and –256. The absolute value of the sum is 268.
- 16. If $z = x + yi$, then the given equation is the sum of the distances of (x, yi) to $(3, 0)$ and (–5, 0). This is the definition of an ellipse, where the given points are the foci and 14 is the sum of the focal radii, 2a. The center is

(-1, 0), so
$$
c = 4
$$
. Eccentricity $= \frac{c}{a} = \frac{4}{7}$.

17. Let point L be (x, y) . The line that contains L is $y = -\sqrt{3}x \rightarrow y^2 = 3x^2$. $9x^2 + 4y^2 = 36$ $+4(3x^2)=36 \rightarrow 7x^2=12.$ $x^2=\frac{12}{7}, y^2=\frac{36}{7}.$

- 18. An equation for the parabola is $y = a(x - 10)^2 + 70$, since the vertex is (10, 70). The initial point is (0, 50), so $50 = a(0 - 10)^2 + 70 \rightarrow -20 = 100a \rightarrow$ $a = -\frac{1}{5}$, $0 = -\frac{1}{5}(x-10)^2 + 70$ $=-\frac{1}{7}$. $0=-\frac{1}{7}(x-10)^2+70 \rightarrow$ $-350 = -(x - 10)^2 \rightarrow \sqrt{350} = x - 10 \rightarrow$ $x = 10 + 5\sqrt{14}$.
- 19. Due to symmetry, the center of R is $(r, 0)$. We need the distance from $(r, 0)$ to $(-2, 0)$ and (4, 2) or (4, –2): $(r+2)^2+(0-0)^2=(r-4)^2+(0-2)^2$. $r^2 + 4r + 4 = r^2 - 8r + 16 + 4 \rightarrow 12r = 16 \rightarrow r = \frac{4}{3}.$
- 16 π B $\pi\sqrt{2}$.

15. Let *a* and *b* be the two roots. Their product

is 3072 = 3-2²⁰. $a-b = 244$. There are two

that they intersect at (3,-1)

is 3072 = 3-2²⁰. $a-b = 244$. There are two

that $c = 5$. Since $b = \frac{3$ 20. By sketching the graph we can see that the hyperbola opens horizontally. The slopes of the asymptotes are $\pm \frac{3}{4}$. Using the asymptote equations as a system of equations, we find that they intersect at $(3, -1)$. We now know that $c = 5$. Since $b = \frac{3}{5}$ $=\frac{3}{4}$ and $a^2 + b^2 = c^2$, we can find the equations of the directrices. $x=3\pm\frac{a^2}{c}=3\pm\frac{16}{5}=\frac{31}{5},-\frac{1}{5}.$
	- 21. From the given information, we have $(x-1)^2$ $(y-1)$ $\overline{a^2}$ + $\overline{b^2}$ $2 (11.21)^2$ $\frac{(x-1)^2}{a^2} + \frac{(y-3)^2}{b^2} = 1$. We can substitute the given values to form a system of equations: $\left(\frac{16}{a^2} + \frac{9}{b^2} = 1\right)$ (4)
 $\rightarrow -\frac{260}{b^2} = -5 \rightarrow a^2 = 52.$

$$
\sqrt{\frac{a^2}{a^2} + \frac{4}{b^2}} = 1 \quad (4)
$$

\n
$$
\frac{36}{a^2} + \frac{4}{b^2} = 1 \quad (-9)
$$

\n
$$
\frac{16}{52} + \frac{9}{b^2} = 1 \rightarrow b^2 = 13.
$$
 Now we have
\n
$$
h = -1, k = -3, a^2 = 52, b^2 = 13 \rightarrow
$$

\n
$$
\frac{52}{13} + \frac{-3}{-1} = 7.
$$

22. $\begin{cases} x^2 + 3xy = 28 & 2 \end{cases}$ $\rightarrow \begin{cases} 2x^2 + 6xy = 28 & 2 \end{cases}$ $y^2 + xy = 8$ (7) $\left(28y^2 + 7xy\right)$ $2.2m - 29.02$ $\left(2r^2\right)$ $2 \cdot 2 - 9(7)$ $2 \cdot 2$ $3xy = 28$ (2) $\left(2x^2 + 6xy\right) = 56$ $\begin{cases} x^2 + 3xy = 28 \\ 4y^2 + xy = 8 \end{cases}$ $\begin{cases} 2x^2 + 6xy = 56 \\ 28y^2 + 7xy = 56 \end{cases}$

Subtract to get $2x^2 - xy - 28y^2 = 0$, which factors into $(2x+7y)(x-4y) = 0$. We can substitute either of these factors into the system as one of the equations.

22.
$$
\left(4y^2 + xy = 8 (7) \right)^{-1} (28y^2 + 7xy = 56
$$
 and use the quadratic formula:
\nSubtract to get $2x^2 - xy - 28y^2 = 0$, which
\nfactors into $(2x+7y)(x-4y) = 0$. We can
\nsubstitute either of these factors into the
\nsystem as one of the equations.
\n $\left[xy + 4y^2 = 8 \right]$
\n $\left(2x + 7y = 0 \right)$
\n $\left(2x + 7y = 0 \right)$

23. Add the sides to get $x^2 + 2xy + y^2 = 25$. This factors into $(x+y)^2 = 25$. We can

 solve this use each solution with the other equation.

$$
\begin{cases}\n x + y = 5 \\
 xy = 5\n\end{cases}\n\qquad\n\begin{cases}\n x + y = -5 \\
 xy = 5\n\end{cases}
$$
\n
$$
x(5-x) = 5\n\end{cases}\n\qquad\n\begin{cases}\n x + y = -5 \\
 xy = 5\n\end{cases}
$$
\n
$$
x^2 - 5x + 5 = 0\n\end{cases}\n\qquad\n\begin{cases}\n x^2 + 5x + 5 = 0 \\
 x^2 + 5x + 5 = 0\n\end{cases}
$$
\n
$$
\begin{cases}\n x = \frac{-5 \pm \sqrt{5}}{2} \\
 y = \frac{-5 \mp \sqrt{5}}{2}\n\end{cases}
$$

 The shortest distance is between the points On the left or the points on the right. $D = \sqrt{10}$.

24. $4x^2 - 12xy + 9y^2 + 20x - 30y + 25 = 0$ factors into $(2x-3y)^2 + 10(2x-3y) + 25 = 0 \rightarrow$ $(2x-3y+5)^2 = 0$, which is one line.

- 25. We will rewrite $x^2 + 3xy + 3y^2 x + 1 = 0$ and use the quadratic formula: x^{2} + $(3y-1)x$ + $(3y^{2} + 1) = 0$. $x = \frac{1 - 3y \pm \sqrt{9y^2 - 6y + 1 - 12y^2 - 4}}{2}$ 2 $=\frac{1-3y\pm\sqrt{9y^2-6y+1-12y^2-4}}{2}$ $x = \frac{1-3y \pm \sqrt{-3(y+1)^2}}{2}$ $=\frac{1-3y\pm\sqrt{-3(y+1)^2}}{2}$, which is only defined at the point $(2, -1)$.
- 26. Create a system of equations with the given information:

$$
\begin{cases} \frac{1}{2}a + v_0 + s_0 = 52\\ 2a + 2v_0 + s_0 = 52 \end{cases} \rightarrow \begin{cases} a + 2v_0 + 2s_0 = 104\\ 2a + 2v_0 + s_0 = 52\\ 9a + 6v_0 + 2s_0 = 40 \end{cases}
$$

 Add –2 times the first equation to the second equation and –9 times the first equation to the third equation.

$$
\begin{cases}\n a + \quad 2v_0 + \quad 2s_0 = \quad 104 \\
 -2v_0 - \quad 3s_0 = \quad -156 \\
 -12v_0 - \quad 16s_0 = \quad -896\n\end{cases}
$$

 Add –6 times the second equation to the third equation.

$$
\begin{cases}\n a + 2v_0 + 2s_0 = 104 \\
 -2v_0 - 3s_0 = -156 \\
 2s_0 = 40\n\end{cases}
$$

 $s_0 = 20$, $v_0 = 48$, $a = -32$. (When measured in feet, a will always be -32 .)

27. The circumcenter is the intersection of the perpendicular bisectors of the sides. We find the perpendicular bisectors of \overline{AB} and \overline{BC} and then find their intersection. If the midpoints of each line are M and N ,

respectively, then $M\left(\frac{3}{2}, 1\right)$ and $N\left(\frac{5}{2}, -\frac{3}{2}\right)$. $(5 \quad 3)$ $\left(\frac{3}{2},-\frac{3}{2}\right)$. The slopes are $-\frac{2}{5}$ and 1, respectively. The two lines are $\frac{5}{2} \left(x - \frac{3}{2} \right) = y - 1 \rightarrow y = \frac{5}{2} x - \frac{11}{4}$ $\frac{2}{2}$ $\left(x-\frac{2}{2}\right)$ $\frac{-y-1}{y-2}$ $\frac{-2}{2}$ $\frac{x-2}{4}$ $\left(x-\frac{3}{2}\right) = y-1 \rightarrow y = \frac{5}{2}x-\frac{11}{4}$ and $-\left(x-\frac{5}{2}\right) = y + \frac{3}{2} \rightarrow y = -x + 1$. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{y+2}{2}$ $-\left(x-\frac{5}{2}\right) = y + \frac{3}{2} \rightarrow y = -x + 1$. Now find the intersections: $\frac{5}{8}x - \frac{11}{1} = -x + 1$ $\frac{5}{2}x - \frac{11}{4} = -x + 1 \rightarrow x = \frac{15}{14}.$ The slopes are $-\frac{2}{5}$ and 1, respectively. The

two lines are $-\frac{5}{5}$ and 1, respectively. The

two lines are $-\frac{5}{5}$ and 1, respectively. The

two lines are $-\frac{5}{2}\left(x-\frac{3}{2}\right) = y-1 \rightarrow y = \frac{5}{2}x-\frac{11}{4}$

and $-\left(x-\frac$

28. The volume of an ellipsoid can be found in the same manner as the area of an ellipse they're analogous to circles. The volume of a circle is found by $\frac{4}{3}\pi r^3$. For the ellipsoid, the radii are the semi-major and semi-minor axes.

 Since we are rotating around the major axis, we will use the semi-minor axis length twice.

$$
V = \frac{4}{3}\pi(7)(\sqrt{33})^2 = 308\pi.
$$

29. We need to complete the square and get a negative value on the right side. This automatically eliminates choices A and B.

$$
x2-4x+4+y2+8y+16=-k-12+20
$$

(x-2)²+(y+4)² = 8-k
8-k<0 \rightarrow k>8.

30. Statement I is just the Pythagorean theorem. The inscribed angle is a right angle.

 Statement II is false. The distance from the center to a directrix is $\frac{a^2}{c}$ ²
–, and the distance from the center to the corresponding focus is c. $\frac{a^2}{c} - c \rightarrow \frac{a^2 - c^2}{c}$. 2 a^2 a^2 $-c \rightarrow \frac{a^2-c^2}{a}$. For an ellipse, $a^2 - b^2 = c^2$, so the correct statement is $p = \frac{b^2}{a}$ c $=\frac{b^2}{a}$.

Statement III is true. We know that $p = \frac{b^2}{2}$ c $=\frac{b^2}{a}$.

The length of the major axis is $2a$, which we

 e^2 $1 -$

Statement IV is also true.

 $p = c - \frac{a^2}{a} \rightarrow \frac{c^2 - a^2}{b} \rightarrow \frac{b^2}{c}$. $\overline{c} \rightarrow \overline{c} \rightarrow \overline{c}$. 2 a^2 b^2 $=c-\frac{a^2}{2} \rightarrow \frac{c^2-a^2}{2} \rightarrow \frac{b^2}{2}$. The length of the

transverse axis is 2a. This can be rewritten as

$$
2a = \frac{2\left(\frac{b^2}{a}\right)}{\left(\frac{b^2}{a^2}\right)} \rightarrow \frac{2\left(\frac{b^2}{a}\right)}{\left(\frac{c^2 - a^2}{a^2}\right)} \rightarrow \frac{2\left(\frac{c}{a}\cdot\frac{b^2}{c}\right)}{e^2 - 1} \rightarrow \frac{2ep}{e^2 - 1}.
$$

 In statement V, the radical axis of two circles is the locus of points at which tangents drawn to both circles have the same length. It is always a straight line perpendicular to the line connecting the centers. When the circles are unequal in size, the radical axis is closer to the circumference of the larger circle; since these circles are congruent, it goes through the midpoint of the line connecting the centers.