- 1. D
- 2. В
- 3. С
- 4. D 5. Е
- 6. А
- В
- 7. 8. В
- Е 9.
- 10. A
- 11. A
- 12. D
- 13. E 14. A
- 15. A
- 16. D
- 17. C 18. E
- 19. C
- 20. C
- 21. C
- 22. D
- 23. A
- 24. C
- 25. B
- 26. A
- 27. E
- 28. A
- 29. B
- 30. A

-		
1.	D	There are $\binom{5}{4} = 5$ ways to choose exactly 4 of the 5 coins to land as tails. Since
		there are a total of $2^5 = 32$ ways to flip a coin, the probability is $\left \frac{5}{32}\right $
2.	В	We count by compliment. The number of ways to roll a sum of 11 is 2 and the
		number of ways to roll a sum of 12 is 1. Thus, our answer is $1 - \frac{3}{36} = \frac{11}{12}$
3.	С	There are $\binom{9}{3}$ ways to select the first group, $\binom{6}{3}$ ways to select the second group, and
		the last group is set. However, since the groups are not distinguishable, we divide by
		the ways to number the groups $3! = 6$. Then our total is $\frac{\binom{9}{3}\binom{6}{3}}{6} = \boxed{280}$
4.	D	The number of ways to select a black marble, a pink marble, then a blue marble is 4 \cdot
		$3 \cdot 3 = 36$. The three colors may be selected in any order so the number of ways to
		select three different colors is $36 \cdot 6 = 216$. The total number of ways to select 3
		marbles without replacement is $10 \cdot 9 \cdot 8 = 720$. So, $\frac{216}{720} = \left \frac{3}{10} \right $
5.	Е	Let a, b, c, d, e represent the number of seats to the left of the first student, the
		number of seats between the first and second student, and so on. Then $a + b + c + d + c$
		$d + e = 6$ where b, c, $d > 0$. By stars and bars, the number of solutions to this equation is $\binom{(6-3)+5-1}{2} = 25$. The number of wave to east the four students is $41 = 1$
		equation is $\binom{(6-3)+5-1}{5-1} = 35$. The number of ways to seat the four students is $4! = 24$. In total $25 - 24 = \boxed{940}$
6.	Α	$24. \text{ In total, } 35 \cdot 24 = 840$
0.		$\frac{1}{4}\left(4\cdot 0+2\cdot (0+12)+\frac{4}{3}\cdot \left(0+\frac{16}{3}+\frac{64}{3}\right)+1\cdot (0+3+12+27)\right) = \boxed{\frac{457}{18}}$
7.	В	We must choose one suit, and five cards within that suit. $4 \cdot \binom{13}{5} = 5148$
8.	В	$f'(x) = -\frac{x}{\sqrt{2-x^2}}$ so that $-\frac{x}{\sqrt{2-x^2}} > \sqrt{2-x^2} \Rightarrow x^2 - x - 2 > 0 \Rightarrow x < -1, x > 2.$
		The domain of f is $\left[-\sqrt{2}, \sqrt{2}\right]$, thus the probability $f'(k) > f(k)$ is $\frac{\sqrt{2}-1}{2\sqrt{2}} = \left\lfloor \frac{2-\sqrt{2}}{4} \right\rfloor$
9.	Е	By the Principle of Inclusion-Exclusion, 49 + 25 + 26 = (10 + 6 + 15) + 2 = 92
10.	Α	49 + 25 + 36 - (10 + 6 + 15) + 3 = 82 There are $3 \cdot 3 \cdot 3 \cdot 3 = 81$ ways to roll exactly two even numbers and one odd
		number and $3 \cdot 3 \cdot 3 = 27$ ways to roll three even numbers. To get a sum less than 7,
		the possible numbers showing are $(1,2,2)$, $(1,2,4)$, $(3,2,2)$, $(2,2,2)$ for a total of 3 +
		$6 + 3 + 1 = 13$ possibilities. So, our probability is $\frac{13}{108}$
11.	Α	Set the top row to be [1,2,3]. Then the second row can be [2,3,1] or [3,1,2], with the
		third row determined. There are 6 possible ways to permute the first row. So the total
12.	D	number of possibilities is $2 \cdot 6 = 12$
12.	D E	$3^4 = 81$ Arbitrarily color one vertex any of the 3 possible colors. The two vertices adjacent to
13.		this vertex can either be the same color or different colors. If they are the same color
		there are 2 possible ways to color them, and there is 2 possible ways to color the
		final vertex. If they are different colors, then they must be the two colors not taken

		by the first vertex. There are 2 ways to color them different colors, and there is 1
		way to color the final vertex. In total, $3 \cdot (2 \cdot 2 + 2) = \boxed{18}$
14.	Α	
		This is a geometric series with first term $\frac{1}{6}$ and ratio $\frac{25}{36}$. $\frac{\overline{6}}{1-\frac{25}{36}} = \frac{11}{25}$
1.5	•	$1 - \frac{3}{36}$
15.	A	$\binom{9}{3}\left(-\frac{1}{x^2}\right)^3 (2x)^6 = -5376$
16.	D	The total probability must be equal to 1. Therefore, \sim
		$\int_0^\infty a \cdot 3^{-x} dx = 1$ $\frac{-a \cdot 3^{-x}}{\ln 3} \Big _0^\infty = 1$
		$-a \cdot 3^{-x}$
		$a = \ln 3$
17.	С	$\int_{1}^{3} \ln 3 \cdot 3^{-x} dx = -3^{-x} \left \frac{3}{1} = \frac{1}{3} - \frac{1}{27} = \left \frac{8}{27} \right $
18.	Е	Using integration by parts,
		$\int_{0}^{\infty} x \ln 3 \cdot 3^{-x} dx = -x \cdot 3^{-x} + \frac{1}{\ln 3} 3^{-x} \Big _{0}^{\infty} = \boxed{\frac{1}{\ln 3}}$
19.	С	$\int_{0}^{c} \ln 3 \cdot 3^{-x} dx = \frac{1}{2}$
		$\int_{0}^{11} 113 \cdot 3^{-1} dx = \frac{1}{2}$
		$-3^{-x} \mid_{0}^{c} = \frac{1}{2}$
		$-3^{-c} + 1 = \frac{1}{2}$
		$c = \frac{\ln 2}{\ln 3}$
20.	С	Note that, $-x^{4} + 5x^{2} - 4 > 0 \Rightarrow -(x - 1)(x + 1)(x - 2)(x + 2) > 0$
		$-x + 5x - 4 > 0 \Rightarrow -(x - 1)(x + 1)(x - 2)(x + 2) > 0$ So that $1 < x < 2$, and
		$1^2 + 2^2 = 5$
21.	С	Using linearity of expectation,
		$\frac{1}{9} + 4 \cdot \frac{1}{10} = \boxed{\frac{23}{45}}$
22.	D	Consider any set of 3 strangers. There is a $\frac{1}{8}$ probability that the three strangers form
		a friend triangle. There are $\binom{8}{3} = 56$. Using linearity of expectation,
		$56 \cdot \frac{1}{8} = \boxed{7}$ The bounds of integration are given by $x - x^2 = kx \Rightarrow x = 0, 1 - k$. Then,
23.	Α	The bounds of integration are given by $x - x^2 = kx \Rightarrow x = 0, 1 - k$. Then,
		$\frac{\int_0^1 \int_0^{1-k} x - x^2 - kx dx dk}{1-0} = \int_0^1 \frac{(1-k)^3}{6} dk = \boxed{\frac{1}{24}}$
L		

0.4	C	81
24.	C	We count by compliment. There are $\frac{8!}{3!2!} = 3360$ total ways to arrange the letters.
		The first and last letters can be either A or S, with $\frac{6!}{2!} = 360$ and $\frac{6!}{3!} = 120$ ways,
		respectively. Thus, by compliment $3360 - 360 - 120 = 2880$
25.	В	We arrange the 3 up steps and 3 right steps required to travel from $(0,0)$ to $(3,3)$.
		There are $\binom{6}{3}$ ways to do this. Similarly, there are $\binom{4}{2}$ ways to arrange the 2 up steps
		and 2 right steps to travel from (3,3) to (5,5). In total, $\binom{6}{3}\binom{4}{2} = \boxed{120}$
26.	А	We count by compliment. There are 2^4 ways to pick a subset of [4]. We want $A \cap$
		$B = \emptyset$. Thus, for each element of [4] it can be in A only, it can be in B only, or it can
		be in neither set. Therefore, the number of ways is $2^4 \cdot 2^4 - 3^4 = 175$
27.	Е	Method 1: Given any four unlabeled points, there are 8 possible labeling which draw
		chords that intersect. Additionally, there are $4! = 24$ possible labelings. Therefore,
		the probability is $\frac{8}{24} = \frac{1}{3}$
		Method 2: WLOG let the circumference be 1. Placement of A is arbitrary. B may be
		placed a distance of x counterclockwise from A . C may be placed between A and B
		along the length x or $1 - x$ and D must be placed opposite C, on the length $1 - x$ or
		x, respectively. So, the probability is given by
		$\int_0^1 x(1-x) + (1-x)x dx = \left \frac{1}{3}\right $
28.	Α	We consider the possible residues of the elements in the set mod 20. For $0 \le x \le 9$,
		if x is a residue of an element in the set, then $20 - x$ cannot be a residue of an
		element in the set. This gives a maximum size of 11 . This is achieved by the set
		{0,1,2,3,4,5,6,7,8,9,10}
29.	В	We choose $1 \le i \le 6$, so that $f(i) = i$. The remaining elements of [6] must be in a
		derangement. Using the recursive formula $D_n = (n-1)(D_{n-1} + D_{n-2})$, where D_n
		gives the number of derangements of $[n]$, and $D_1 = 0$, $D_2 = 1$, we find that $D_5 = 44$.
	L .	Then the total number of bijections is $6 \cdot 44 = 264$
30.	Α	We wish to find probability that $(2n - 1)y < x \le 2ny$ for some $n \in \mathbb{N}$. By
		graphing, we find that for a given value of <i>n</i> , this gives a probability of $\frac{1}{2n-1} - \frac{1}{2n}$.
		Then,
		$\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \boxed{\ln 2}$