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1. D There are (5
4
) = 5 ways to choose exactly 4 of the 5 coins to land as tails. Since 

there are a total of 25 = 32 ways to flip a coin, the probability is 
5

32
 

2. B We count by compliment. The number of ways to roll a sum of 11 is 2 and the 

number of ways to roll a sum of 12 is 1. Thus, our answer is 1 −
3

36
=

11

12
 

3. C There are (9
3
) ways to select the first group, (6

3
) ways to select the second group, and 

the last group is set. However, since the groups are not distinguishable, we divide by 

the ways to number the groups 3! = 6. Then our total is 
(93)(

6
3)

6
= 280  

4. D The number of ways to select a black marble, a pink marble, then a blue marble is 4 ⋅
3 ⋅ 3 = 36. The three colors may be selected in any order so the number of ways to 

select three different colors is 36 ∙ 6 = 216. The total number of ways to select 3 

marbles without replacement is 10 ⋅ 9 ⋅ 8 = 720. So, 
216

720
=

3

10
 

5. E Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 represent the number of seats to the left of the first student, the 

number of seats between the first and second student, and so on. Then 𝑎 + 𝑏 + 𝑐 +
𝑑 + 𝑒 = 6 where 𝑏, 𝑐, 𝑑 > 0. By stars and bars, the number of solutions to this 

equation is ((6−3)+5−1
5−1

) = 35. The number of ways to seat the four students is 4! =

24. In total, 35 ⋅ 24 = 840  

6. A 1

4
(4 ⋅ 0 + 2 ⋅ (0 + 12) +

4

3
⋅ (0 +

16

3
+
64

3
) + 1 ⋅ (0 + 3 + 12 + 27)) =

457

18
 

7. B We must choose one suit, and five cards within that suit. 4 ⋅ (13
5
) = 5148  

8. B 𝑓′(𝑥) = −
𝑥

√2−𝑥2
 so that −

𝑥

√2−𝑥2
> √2 − 𝑥2 ⇒ 𝑥2 − 𝑥 − 2 > 0 ⇒ 𝑥 < −1, 𝑥 > 2. 

The domain of 𝑓 is [−√2, √2], thus the probability 𝑓′(𝑘) > 𝑓(𝑘) is 
√2−1

2√2
=

2−√2

4
 

9. E By the Principle of Inclusion-Exclusion,  

49 + 25 + 36 − (10 + 6 + 15) + 3 = 82 

10. A There are 3 ⋅ 3 ⋅ 3 ⋅ 3 = 81 ways to roll exactly two even numbers and one odd 

number and 3 ⋅ 3 ⋅ 3 = 27 ways to roll three even numbers. To get a sum less than 7, 

the possible numbers showing are (1,2,2), (1,2,4), (3,2,2), (2,2,2) for a total of 3 +

6 + 3 + 1 = 13 possibilities. So, our probability is 
13

108
 

11. A Set the top row to be [1,2,3]. Then the second row can be [2,3,1] or [3,1,2], with the 

third row determined. There are 6 possible ways to permute the first row. So the total 

number of possibilities is 2 ⋅ 6 = 12  

12. D 34 = 81  

13. E Arbitrarily color one vertex any of the 3 possible colors. The two vertices adjacent to 

this vertex can either be the same color or different colors. If they are the same color 

there are 2 possible ways to color them, and there is 2 possible ways to color the 

final vertex. If they are different colors, then they must be the two colors not taken 
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by the first vertex. There are 2 ways to color them different colors, and there is 1 

way to color the final vertex. In total, 3 ⋅ (2 ⋅ 2 + 2) = 18  

14. A 

This is a geometric series with first term 
1

6
 and ratio 

25

36
. 

1

6

1−
25

36

=
11

25
 

15. A 
(
9

3
) (−

1

𝑥2
)
3

(2𝑥)6 = −5376 

16. D The total probability must be equal to 1. Therefore,  

∫ 𝑎 ⋅ 3−𝑥
∞

0

𝑑𝑥 = 1 

−𝑎 ⋅ 3−𝑥

ln 3
│0
∞ = 1 

𝑎 = ln 3  
17. C 

∫ ln3 ⋅ 3−𝑥
3

1

𝑑𝑥 = −3−𝑥│1
3 =

1

3
−

1

27
=

8

27
 

18. E Using integration by parts, 

∫ 𝑥 ln 3 ⋅ 3−𝑥
∞

0

𝑑𝑥 = −𝑥 ⋅ 3−𝑥 +
1

ln 3
3−𝑥│0

∞ =
1

ln 3
 

19. C 
∫ ln 3 ⋅ 3−𝑥

𝑐

0

𝑑𝑥 =
1

2
 

−3−𝑥│0
𝑐 =

1

2
 

−3−𝑐 + 1 =
1

2
 

𝑐 =
ln 2

ln 3
 

20. C Note that,  

−𝑥4 + 5𝑥2 − 4 > 0 ⇒ −(𝑥 − 1)(𝑥 + 1)(𝑥 − 2)(𝑥 + 2) > 0 

So that 1 < |𝑥| < 2, and 

12 + 22 = 5  

21. C Using linearity of expectation,  

1

9
+ 4 ⋅

1

10
=

23

45
 

22. D Consider any set of 3 strangers. There is a 
1

8
 probability that the three strangers form 

a friend triangle. There are (8
3
) = 56. Using linearity of expectation, 

56 ⋅
1

8
= 7  

23. A The bounds of integration are given by 𝑥 − 𝑥2 = 𝑘𝑥 ⇒ 𝑥 = 0,1 − 𝑘. Then,  

∫ ∫ 𝑥 − 𝑥2 − 𝑘𝑥 𝑑𝑥
1−𝑘

0

1

0
𝑑𝑘

1 − 0
= ∫

(1 − 𝑘)3

6
𝑑𝑘

1

0

=
1

24
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24. C We count by compliment. There are 
8!

3!2!
= 3360 total ways to arrange the letters. 

The first and last letters can be either A or S, with 
6!

2!
= 360 and 

6!

3!
= 120 ways, 

respectively. Thus, by compliment 3360 − 360 − 120 = 2880   

25. B We arrange the 3 up steps and 3 right steps required to travel from (0,0) to (3,3). 

There are (6
3
) ways to do this. Similarly, there are (4

2
) ways to arrange the 2 up steps 

and 2 right steps to travel from (3,3) to (5,5). In total, (6
3
)(4

2
) = 120  

26. A We count by compliment. There are 24 ways to pick a subset of [4]. We want 𝐴 ∩
𝐵 = ∅. Thus, for each element of [4] it can be in 𝐴 only, it can be in 𝐵 only, or it can 

be in neither set. Therefore, the number of ways is 24 ⋅ 24 − 34 = 175   

27. E Method 1: Given any four unlabeled points, there are 8 possible labeling which draw 

chords that intersect. Additionally, there are 4! = 24 possible labelings. Therefore, 

the probability is 
8

24
=

1

3
 

 

Method 2: WLOG let the circumference be 1. Placement of 𝐴 is arbitrary. 𝐵may be 

placed a distance of 𝑥 counterclockwise from 𝐴. 𝐶 may be placed between 𝐴 and 𝐵 

along the length 𝑥 or 1 − 𝑥 and 𝐷 must be placed opposite 𝐶, on the length 1 − 𝑥 or 

𝑥, respectively. So, the probability is given by 

∫ 𝑥(1 − 𝑥) + (1 − 𝑥)𝑥
1

0

𝑑𝑥 =
1

3
 

28. A We consider the possible residues of the elements in the set mod20. For 0 ≤ 𝑥 ≤ 9, 

if 𝑥 is a residue of an element in the set, then 20 − 𝑥 cannot be a residue of an 

element in the set. This gives a maximum size of 11 . This is achieved by the set  

{0,1,2,3,4,5,6,7,8,9,10} 
29. B We choose 1 ≤ 𝑖 ≤ 6, so that 𝑓(𝑖) = 𝑖. The remaining elements of [6] must be in a 

derangement. Using the recursive formula 𝐷𝑛 = (𝑛 − 1)(𝐷𝑛−1 + 𝐷𝑛−2), where 𝐷𝑛 

gives the number of derangements of [𝑛], and 𝐷1 = 0,𝐷2 = 1, we find that 𝐷5 = 44. 

Then the total number of bijections is 6 ⋅ 44 = 264  

30. A We wish to find probability that (2𝑛 − 1)𝑦 < 𝑥 ≤ 2𝑛𝑦 for some 𝑛 ∈ ℕ. By 

graphing, we find that for a given value of 𝑛, this gives a probability of 
1

2𝑛−1
−

1

2𝑛
. 

Then, 
1

1
−
1

2
+
1

3
−
1

4
+⋯ = ln2  

 

 


