- 1. D
- 2. С
- 3. В
- C D 4. 5.
- 6. А
- D C 7. 8.
- А 9.
- 10. D
- 11. A
- 12. B 13. C 14. B

- 15. A 16. C 17. E 18. C
- 19. B
- 20. B
- 21. D 22. D
- 23. C
- 24. A
- 25. D
- 26. B
- 27. E
- 28. A
- 29. B 30. C

1. D $1 + 2 + \dots + 2022 = 1011 \cdot 2023 \equiv 3 \pmod{10}$.

2. C If
$$a_n = a + (n-1)d$$
, then $\frac{a_5}{a_3} = \frac{a+4d}{a+2d} = 2$. This implies that $a = 0$. So $\frac{a_4}{a_2} = \frac{3d}{d} = 3$.

3. B
$$\frac{2022+1}{7} = 289$$

- 4. C If we let $a_1 = m$, then $a_1 + a_2 + \dots + a_n = m + (m+1) + \dots + (m+n-1) = \frac{n(2m+n-1)}{2} = 2022$. Then we have $n(2m+n-1) = 4044 = 2^2 \cdot 3 \cdot 337$. The largest possible value for n = 12.
- 5. D If we let $S = 1 + 2x + 3x^2 + \cdots$, then $xS = x + 2x^2 + 3x^3 + \cdots$. Subtracting xS from S, we obtain $(1 x)S = 1 + x + x^2 + \cdots = \frac{1}{1 x}$. Thus, $S = \frac{1}{(1 x)^2}$. Solving $\frac{1}{(1 x)^2} = 25$, we get $x = \frac{4}{5}$.
- 6. A Dividing both sides of $na_{n+1} = 2(n+1)a_n$ by n(n+1), we get $\frac{a_{n+1}}{n+1} = 2\frac{a_n}{n}$. This implies that $\frac{a_n}{n}$ is a geometric sequence with the initial term $\frac{a_1}{1} = 1$. Therefore, $\frac{a_n}{n} = 2^{n-1}$, or $a_n = n2^{n-1}$. Since $a_{101} = 101 \cdot 2^{100} \equiv 1 \cdot 6 \equiv 6 \pmod{10}$, the units digit value is 6.
- 7. D Let 13m 39, 13m 26, 13m 13, 13m, 13m + 13, 13m + 26, 13m + 39 be 7 consecutive positive multiples of 13. Then the sum is 91m where $m \ge 4$ and $91m \le 2022$. There are 19 integers m satisfying the conditions.
- 8. C If $a_n = ar^{n-1}$, then $a_3 = ar^2 = 12$ and $a_9 = ar^8 = 75$. Then $a_6 = ar^5 = \sqrt{a_3 a_9} = \sqrt{12 \cdot 75} = 30$.
- 9. A $a_{19} = (a_1 + a_2 + \dots + a_{19}) (a_1 + a_2 + \dots + a_{18}) = (19! + 20!) (18! + 19!) = 20! 18! \equiv 0 + 1 \equiv 1 \pmod{19}.$
- 10. D Taking log_2 on both sides of the recurrence relation $b_{n+2} = b_{n+1}b_n$, we get $log_2 b_{n+2} = log_2 b_{n+1} + log_2 b_n$. Then $log_2 b_n$ is the Fibonacci sequence. Thus $log_2 b_{11} = 89$ or $b_{11} = 2^{89}$. Hence, the units digit of b_{11} is 2.
- 11. A Note that $a_n \cdot a_{n+1} = (n^2 + 1)((n+1)^2 + 1) = (n(n+1) + 1)^2 + 1 = a_{n^2+n+1}$. Therefore, $a_{11} \cdot a_{12} \cdot a_{13} \cdot a_{14} = a_{133} \cdot a_{183}$. So p + q = 133 + 183 = 316.
- 12. B Since the perimeter of the right triangle is 60, we can let the three sides be 20 d, 20,20 + d. Then it follows from the Pythagorean theorem that $(20 d)^2 + 20^2 = (20 + d)^2$. Solving the equation, we get d = 5. Therefore, the hypotenuse is of length 25.
- 13. C Since a_n is an arithmetic sequence, $a_1 + a_2 + \dots + a_9 9 = 99a_{50} = 9999$. Hence, $a_{50} = 101$.
- 14. B Note that $S = (40 38)(40 + 38) + (39 37)(39 + 37) + \dots + (4 2)(4 + 2) + (3 1)(3 + 1) = 2(40 + 39 + 38 + \dots + 2 + 1) = 40 \cdot 41 = 1640$. Thus, the hundreds digit of S is 6.
- 15. A Note that $a_1 + a_2 + \dots + a_{20} = 6(a_1 + a_2 + \dots + a_{10})$. If we let $a_n = a + (n-1)d$, then we get $\frac{20(2a+19d)}{2} = 6\frac{10(2a+9d)}{2}$. Simplifying the expression we get a = -2d. Thus, $\frac{a_1}{a_2} = \frac{a}{a+d} = 2$.
- 16. C Let 2,2*r*, and $2r^2$ be the three side lengths of the right triangle. Then by Pythagorean theorem we get $2^2 + (2r)^2 = (2r^2)^2$ or $r^4 r^2 1 = 0$. Solving the

equation for r^2 , we obtain $r^2 = \frac{1+\sqrt{5}}{2}$. Therefore, the hypotenuse is of length $2r^2 = 1 + \sqrt{5}$.

- 17. E $i + i^2 + \dots + i^{2022} = i + i^2 = -1 + i$ (NOTA)
- 18. C $a_4 = (a_1)^8$, call $a_1 = e^{i\theta}$, we have $e^{i\theta} = e^{8i\theta}$, thus $8\theta = \theta + 2\pi k$. So the smallest positive $\theta = \frac{2\pi}{7}$, and 2 + 7 = 9.
- 19. B Let a 2d, a d, a, a + d, a + 2d where d > 0 be the five interior angles of a convex pentagon. Then 5a = 540, so a = 108. Since it is a convex pentagon, we must have 108-2d > 0 and 108+2d < 180. Thus, $d \le 35$, so the smallest possible value of the smallest interior angle is $108 2 \cdot 35 = 38$.
- 20. B Note that the sixth term, a_6 , of an arithmetic sequence is the average of the first term, a_1 , and the eleventh term, a_{11} . Hence, $a_6 = \frac{a_1 + a_{11}}{2} = \frac{\frac{3}{7} + \frac{2}{3}}{2} = \frac{23}{42}$. Therefore, p + q = 23 + 42 = 65.
- 21. D Let $S = L_0 + \frac{L_1}{2} + \frac{L_2}{4} + \frac{L_3}{8} + \cdots$. Then $2S = 2 \cdot 2 + L_1 + \frac{L_2}{2} + \frac{L_3}{4} + \cdots$. By adding the two expressions, we obtain $3S = 4 + (L_0 + L_1) + \frac{L_1 + L_2}{2} + \frac{L_2 + L_3}{4} + \cdots = 4 + L_2 + \frac{L_3}{2} + \frac{L_4}{4} + \frac{L_5}{8} \cdots = 4 + 4\left(\frac{L_2}{4} + \frac{L_3}{8} + \cdots\right) = 4 + 4\left(S L_0 \frac{L_1}{2}\right) = 4 + 4\left(S \frac{5}{2}\right).$ Solving it for, we get S = 6.
- 22. D Let the three numbers be *a*, *ar*, and *ar*². Then the sum of the three numbers must be 365, i.e. $a + ar + ar^2 = 365$. Thus, $a(1 + r + r^2) = 365 = 5 \cdot 73$. Then, a = 5 and $1 + r + r^2 = 73$. Solving the quadratic for *r*, we get r = 8. So, there are $ar^2 = 5 \cdot 8^2 = 320$ days from Clair's birthday to Alicia's birthday.
- 23. C Note that $a_n = S_n S_{n-1} = n^3 (n-1)^3 = 3n^2 3n + 1$. Thus, $a_{2022} = 3 \cdot 2022^2 3 \cdot 2022 + 1 \equiv 3 \cdot 4 3 \cdot 2 + 1 \equiv 7 \pmod{10}$.
- 24. A Note that $\frac{2n}{n^4 + n^2 + 1} = \frac{2n}{(n^2 n + 1)(n^2 + n + 1)} = \frac{1}{n^2 n + 1} \frac{1}{n^2 + n + 1}$. Then $\sum_{n=1}^{\infty} \frac{2n}{n^4 + n^2 + 1} = \left(\frac{1}{1^2 1 + 1} \frac{1}{1^2 + 1 + 1}\right) + \left(\frac{1}{2^2 2 + 1} \frac{1}{2^2 + 2 + 1}\right) + \dots = 1$ by telescoping series cancellation. 25. D Note that $A^3 + B^3 + C^3 = 3ABC$ when A + B + C = 0. Since $F_{13} + (-F_{12}) + C_{13} = C_{13} + C_{13} + C_{13} = C_{13} + C_{13} +$
- 25. D Note that $A^3 + B^3 + C^3 = 3ABC$ when A + B + C = 0. Since $F_{13} + (-F_{12}) + (-F_{11}) = 0$, we obtain $F_{13}^3 F_{12}^3 F_{11}^3 = 3F_{13}F_{12}F_{11} = 3 \cdot 233 \cdot 144 \cdot 89 = 2^4 \cdot 3^3 \cdot 89 \cdot 233$. Thus, there are $(4 + 1) \cdot (3 + 1) \cdot (1 + 1) = 80$ divisors.
- 26. B Listing a few early terms 1,2,3,4,2,2, -1, -2, -3, -4, -2, -2,1,2,3,4, \cdots we find that the sequence repeats with the period length 12. In other words, $a_{n+12} = a_n$ for all n. Since $2022 \equiv 6 \pmod{12}$, $a_{2022} \equiv a_6 = 2$.
- 27. E Note that $f(1-x) = \frac{2}{4^{1-x}+2} = \frac{4^x}{4^{x}+2}$. Therefore, f(x) + f(1-x) = 1. It follows from this relationship that $f\left(\frac{1}{2022}\right) + f\left(\frac{2}{2022}\right) + f\left(\frac{3}{2022}\right) + \dots + f\left(\frac{2021}{2022}\right) = 1010.5$.

28. A The sum can be written as
$$S = 101^3 + 100^3 + \dots + 2^3 + 1^3 - 2(100^3 + 98^3 + \dots + 2^3) = \left(\frac{101 \cdot 102}{2}\right)^2 - 16\left(\frac{50 \cdot 51}{2}\right)^2 \equiv 51^2 - 0 \equiv 1 \pmod{100}$$
. Hence, the tens digit of *S* is 0.

29. B Note that
$$P_n = \frac{3n^2 - n}{2}$$
. Thus, $P_{20} = 590$.

30. C Let $P_n = \frac{3n^2 - n}{2} = m^2$ for some positive integer *m*. Then the equation is equivalent to $3\left(n - \frac{1}{6}\right)^2 - 2m^2 = \frac{1}{12}$ or $(6n - 1)^2 - 24m^2 = 1$. This is a Pell's equation whose smallest solution is 6n - 1 = 5 and m = 1. Since we look for the smallest solution n > 1, we compute $\left(5 + \sqrt{24}\right)^k$ for $k = 2, 3, \cdots$, until an integer value *n* is determined. The smallest case comes when k = 3 where $\left(5 + \sqrt{24}\right)^3 = 485 + 99\sqrt{24}$. Setting 6n - 1 = 485 and m = 99, we obtain the desired answer n = 81.