Answers: ADBCC CCAED ADAAB ADBBD CBCAE BCDAC

- The desired area is that of an equilateral triangle with side length 6 being removed from a 60 degree wedge of a circle with the same radius. This area is $\frac{1}{6} \cdot 36\pi - \frac{6^2\sqrt{3}}{4}$ $\frac{\sqrt{3}}{4} = 6\pi - 9\sqrt{3}$. $A + B +$ $C = 18.$
- By the Shoelace Theorem as the problem hints, the area of the triangle is $\frac{1}{2} \begin{pmatrix} -3 & 2 \\ 8 & -2 \end{pmatrix}$ $\begin{vmatrix} 3 & 2 \\ 8 & -1 \end{vmatrix}$ + $\begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\ -1 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 5 & 9 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 \\ 5 & 9 \end{bmatrix} + \begin{bmatrix} 0 & -3 \\ 9 & 8 \end{bmatrix}$ $\begin{pmatrix} 0 & -3 \\ 9 & 8 \end{pmatrix}$ = $\frac{-13+14+36+27}{2}$ $\frac{2+50+27}{2}$ = 32. Subtraction of areas of triangles from an inscribing rectangle can also be used to obtain the same answer.
- The initial surface area of the cube is $6 \cdot 3^2 = 54$. Each added unit cube covers one of its own faces and a region on the original cube of equal size but adds 5 other 1-by-1 faces for a net added area of 4. For six added unit cubes, the proportional increase in surface area is $\frac{24}{54} = \frac{4}{9}$ $\frac{4}{9} \approx 44\%$.

The two curves intersect at $x = \pm \sqrt{\frac{2}{2}}$ $\frac{2}{3a} = \pm k$. The distance between the curves is $2 - 3ax^2$. Integrating, $\int_{-k}^{k} (2 - 3ax^2) dx$ $\int_{-k}^{k} (2 - 3ax^2) dx = \int_{0}^{k} (4 - 6ax^2) dx =$ $\int_0^k (4 - 6ax^2) dx = 4x - 2ax^3\Big|_0^k = 2k(2 - ak^2) = \frac{8}{3}$ $\frac{8}{3}\sqrt{\frac{2}{36}}$ $\frac{2}{3a}$. Let $c=\frac{8}{3}$ $\frac{8}{3}\sqrt{\frac{2}{3}}$ $\frac{2}{3}$. The derivative of $\frac{c}{\sqrt{a}}$ with respect to t is $-\frac{c}{2a}$ $2a\sqrt{a}$ da $\frac{da}{dt}$. Substituting $a = 6$ and $\frac{da}{dt} = 2$ yields an instantaneous rate of change of $-\frac{4}{3}$ $\frac{4}{27}$.

- The volume of the cylindrical tank is $V = \pi r^2 h = 9\pi h$. Deriving, $\frac{dV}{dt} = 9\pi \frac{dh}{dt}$ $\frac{du}{dt} = -9\pi$, so water is entering the cone at a constant rate of 9π . For the cone, $r = \frac{2h}{3}$ $\frac{2h}{3}$, so $V = \frac{\pi r^2 h}{3}$ $\frac{x^2h}{3} = \frac{4\pi h^3}{27}$ $rac{\pi h^3}{27}$, so $rac{dV}{dt}$ $\frac{dv}{dt} =$ $4\pi h^2$ 9 ℎ $\frac{dh}{dt}$. The cylindrical tank has lost half of its volume, which is $\frac{9\pi \cdot 8}{2} = 36\pi$. Solving $\frac{4\pi h^3}{27}$ $\frac{1}{27}$ = 36 π yields $h = 3\sqrt[3]{9}$. Substituting this and $\frac{dV}{dt} = 9\pi$ into our equation gives $\frac{dh}{dt} = \frac{\sqrt[3]{9}}{4}$ $\frac{1}{4}$.
- For all $n \geq 0$, Corey has 2^n dice, each with volume $\left(\frac{2}{5}\right)$ $\left(\frac{2}{125}\right)^{3n}$, making for a total volume of $\left(\frac{16}{125}\right)^{n}$. The sum of the infinite geometric series with this ratio and initial term 1 is $\frac{125}{109}$. 125 + 109 = 234.
- Polynomial long division yields that the function is equal to $x^6 x^4 + x^2 1 + \frac{2}{x^2}$ $\frac{2}{x^2+1}$. Integrating this from 0 to 1 yields a value of $\frac{1}{7} - \frac{1}{5}$ $\frac{1}{5} + \frac{1}{3}$ $\frac{1}{3} - 1 + 2 \cdot \frac{\pi}{4}$ $\frac{\pi}{4} = \frac{\pi}{2}$ $\frac{\pi}{2} - \frac{76}{105}$ $\frac{76}{105}$. $A + B + C = 183$, which leaves a remainder of 3 when divided by 9.
- \circ 8) The radii of two tangent circles would combine to form each side of the triangle. Solving the system $a + b = 20$, $a + c = 22$, and $b + c = 24$ yields $a = 9$, $b = 11$, and $c = 13$. The sum of the areas of the circles with these radii is $81\pi + 121\pi + 169\pi = 371\pi$.
- $f'(x) = 3x^2 6x + 3$ and $f''(x) = 6x 6$. $f'(x) = f''(x)$ at $x = 1$ and $x = 3$. Integrating, $\int_1^3(-3x^2+12x-9) dx = -x^3+6x^2-9x]_1^3 = 0+4 = 4.$
- In a triangle, $1 + \frac{r}{R}$ $\frac{r}{R} = \cos A + \cos B + \cos C$, so $\frac{15}{13}$ $\frac{15}{13}$ = 3 cos *B* and cos *B* = $\frac{5}{13}$ $\frac{3}{13}$. By the Projection Law, $a = b \cos C + c \cos B$ and $c = a \cos B + b \cos A$, so adding, $a + c = b(\cos C + \cos A)$ + $(a + c) \cos B$. Since $\cos C + \cos A = 2 \cos B$, $a + c = (a + 2b + c) \cos B = \frac{5(a + 2b + c)}{12}$ 13 ,

Simplifying, $a + c = \frac{5b}{4}$ $rac{5b}{4}$ and $s = \frac{9b}{8}$ $\frac{\partial b}{\partial 8}$. $rR = \frac{abc}{4s}$ $\frac{abc}{4s}$, so 26 = $\frac{2ac}{9}$ $\frac{ac}{9}$ and $ac = 117$. sin $B = \frac{12}{13}$ $\frac{12}{13}$, so the area of the triangle is $\frac{ac}{2} \sin B = 54$.

The area of a triangle is $\frac{ab \sin c}{2}$, so we know $\frac{a'b \sin c + ab' \sin c + abc' \cos c}{2}$ $\frac{2}{2}$ is constant. Plugging in values, this yields $-9 - 9 + 27\sqrt{3}C' = 0$, so $C' = \frac{2\sqrt{3}}{2}$ 9 .

$$
\int_{-\sqrt{15}}^{\sqrt{15}} ((16 - x^2)^2 - 1^2) \, dx = 2 \int_0^{\sqrt{15}} (x^4 - 32x^2 + 255) \, dx = \frac{x^5}{5} - \frac{32x^3}{3} + 255x \Big|_0^{\sqrt{15}} = 280\sqrt{15}.
$$

- The graphs of these polar curves intersect when $\theta = \frac{\pi}{3}$ $\frac{\pi}{3} \cdot \frac{1}{2}$ $\frac{1}{2} \int_0^{\pi/3} \sin^2 \theta \ d\theta + \frac{1}{2}$ $\frac{1}{2} \int_{\pi/3}^{\pi/2} \sin^2 2\theta \ d\theta =$ 1 $\frac{1}{2} \int_0^{\pi/3} \sin^2 \theta \ d\theta + \frac{1}{4}$ $\frac{1}{4} \int_{2\pi/3}^{\pi} \sin^2 \theta \ d\theta$. Noting that the integral of sin² θ is $\frac{2\theta - \sin 2\theta}{4}$, these integrals are equal to $\frac{2\theta - \sin \theta}{8} \bigg]_0^h$ $\pi/3$ $+\frac{2\theta-\sin 2\theta}{16}\Big]_{2\pi/3}^{\pi}$ π $=\left(\frac{\pi}{4}\right)$ $\frac{\pi}{12} - \frac{\sqrt{3}}{16}$ + $\left(\frac{\pi}{8}\right)$ $\frac{\pi}{8} - \left(\frac{\pi}{12}\right)$ $\left(\frac{\pi}{12}+\frac{\sqrt{3}}{32}\right)\right) = \frac{\pi}{8}$ $\frac{\pi}{8}-\frac{3\sqrt{3}}{32}$ $\frac{32}{2}$.
- The base of a regular tetrahedron is an equilateral triangle with area $\frac{s^2\sqrt{3}}{4}$ $\frac{\sqrt{3}}{4}$. The altitude has length √3 $\frac{\sqrt{3}}{2}$. The fourth vertex is above the center of the base, which is $\frac{1}{3}$ of the way up an altitude of the triangle. The height can be found by solving $\left(\frac{s}{\sqrt{n}}\right)$ $\left(\frac{s}{\sqrt{3}}\right)^2 + h^2 = s^2$, so $h^2 = \frac{2s^2}{3}$ $\frac{s^2}{3}$ and $h = \frac{s\sqrt{6}}{3}$ $\frac{10}{3}$. Plugging into $V = \frac{Bh}{a}$ $rac{3h}{3}$ yields $V = \frac{s^3 \sqrt{2}}{12}$ $\frac{v}{12}$.
- $h=\frac{3r}{3}$ $\frac{3r}{2}$, so $V = \frac{\pi r^2 h}{3}$ $\frac{x^2h}{3} = \frac{\pi r^3}{2}$ $rac{r^3}{2}$. Deriving, $rac{dV}{dt} = \frac{3\pi r^2}{2}$ 2 $\frac{dr}{dt}$ $\frac{dr}{dt}$. Solving $\frac{\pi r^3}{2}$ $\frac{r}{2} = 4\pi$ gives $r = 2$. Substituting in values, $12\pi = 6\pi \frac{dr}{dt}$ $\frac{dr}{dt}$ and $\frac{dr}{dt} = 2$. Diameter is twice radius, so $\frac{dd}{dt} = 4$.

This shape is the rotation of the region bounded by $y = \sqrt{16 - x^2}$ and the line $y = 2$ over the xaxis. $\pi \int_{-2\sqrt{3}}^{2\sqrt{3}} (12 - x^2) dx = 2\pi \int_{0}^{2\sqrt{3}} (12 - x^2) dx = 24\pi x - \frac{2\pi x^3}{3}$ $\frac{1}{3}$ ₀ 2√3 $= 32\pi\sqrt{3}$.

- Multiply by 2 to get a Riemann sum. $\frac{1}{3}$ $rac{1}{2}$ $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{2}{n}$ $\frac{2}{n} \cdot \left(3 - \left(1 + \frac{2k}{n}\right)\right)$ $\binom{n}{k=1}^{\infty} \cdot \left(3 - \left(1 + \frac{2k}{n}\right)^2\right) = \frac{1}{2}$ $\frac{1}{2}\int_1^3(3-x^2)\,dx=$ $3x$ $\frac{3x}{2} - \frac{x^3}{6}$ $\frac{1}{6}$ ₁ 3 $=-\frac{4}{3}$ $\frac{4}{3}$.
- $\lceil \vartheta \rceil$ The slope of the tangent line to the unit circle for a given angle θ is equal to $-\cot \theta$. The area of the triangle is $\frac{\tan \theta}{2}$, and the area of the sector is $\frac{\theta}{2}$, so the area of the desired region is $\frac{\tan \theta - \theta}{2}$. The rate at which this changes with respect to θ is $\frac{\sec^2 \theta - 1}{2}$ $d\theta$ $\frac{d\theta}{dt}$. The particle moves $\frac{\pi}{2}$ radians in 5 seconds for $\frac{d\theta}{dt} = \frac{\pi}{10}$ $\frac{\pi}{10}$. Since sec $\theta = \frac{5}{4}$ $\frac{5}{4}$, the change of area is $\frac{9\pi}{320}$.
- $P+4$ $\frac{P+4}{P-4} = A - 1$ can be rearranged to $AP - 2P - 4A = 0$. Simon's Favorite Factoring Trick can be used to create the equation $(P - 4)(A - 2) = 8$. $P - 4$ and $A - 2$ are integers, and P and A must both be positive. The possible solutions (P, A) are $(5,10)$, $(6,6)$, $(8,4)$, and $(12,3)$. A rectangle of perimeter P can have a maximum area of $(\frac{P}{A})$ $\left(\frac{P}{4}\right)^2$. Only the last 2 solutions are valid rectangles, so the sum of the possible values of P is $8 + 12 = 20$.

Fully calculating each approximation is not necessary; Rohan and Christina both use the same five regions with the middle points and only differ in which region they add to the end. Rohan uses the rectangle with height 6 while Christina uses the rectangle with height −4. Since the widths of the rectangles are both 2, the difference in area is 20.

21) Solving for y yields
$$
y = \sqrt[4]{1 - \frac{x^2}{16}}
$$
, the half-base of the solid. The volume of the solid is $\frac{\sqrt{3}}{4} \int_{-4}^{4} 4 \sqrt{1 - \frac{x^2}{16}} \, dx = \frac{\sqrt{3}}{2} \int_{0}^{4} \sqrt{16 - x^2} \, dx = \frac{\sqrt{3}}{2} \cdot 4\pi = 2\pi\sqrt{3}.$

 $\frac{dx}{d\theta} = -3\cos^2\theta\sin\theta$ and $\frac{dy}{d\theta} = 3\sin^2\theta\cos\theta$. $ds = \sqrt{9\cos^4\theta\sin^2\theta + 9\sin^4\theta\cos^2\theta} =$ $3 \sin \theta \cos \theta \sqrt{\cos^2 \theta + \sin^2 \theta} = 3 \sin \theta \cos \theta$. $\int_0^{\pi/2} 2\pi y \, ds = 6\pi \int_0^{\pi/2} \sin^4 \theta \cos \theta$ $\int_0^{\pi/2} \sin^4 \theta \cos \theta \ d\theta =$ $6\pi \int_0^1 u^4 du = \frac{6\pi}{5}$ $\frac{5\pi}{5}$.

- Set $x' = x + 2y$ and $y' = 2x y$. Recognizing this as looking similar to a rotation matrix, rewrite these equations as $x' = \sqrt{5} \left(\frac{x}{\sqrt{5}} \right)$ $\frac{x}{\sqrt{5}} + \frac{2y}{\sqrt{5}}$ $\frac{2y}{\sqrt{5}}$ and $y' = \sqrt{5} \left(\frac{2x}{\sqrt{5}} \right)$ $rac{2x}{\sqrt{5}} - \frac{y}{\sqrt{5}}$ $\left(\frac{y}{\sqrt{5}}\right)$. Setting sin $\theta = \frac{2}{\sqrt{5}}$ $\frac{2}{\sqrt{5}}$ and cos $\theta = \frac{1}{\sqrt{5}}$ $rac{1}{\sqrt{5}}$ SO that $x' = \sqrt{5}(x \cos \theta + y \sin \theta)$ and $y' = \sqrt{5}(x \sin \theta - y \cos \theta)$ yields that a rotation of θ and scaling the dimensions up by a factor of $\sqrt{5}$ results in $|x'| + |y'| = 6$, a square with diagonal length 12 and whose area is therefore 72. Scaling the area down by $\sqrt{5}^2$ to obtain the original graph yields an area of $\frac{72}{5}$.
- The graph of $r = 2 \sin 3\theta$ has 3 petals, each with volume $\frac{1}{2} \int_0^{\pi/3} 4 \sin^2 3\theta \ d\theta = \frac{1}{3}$ $\frac{1}{3}\int_0^{\pi} 2\sin^2 u \ du.$ Using the double angle formula, this is $\frac{1}{3} \int_0^{\pi} (1 - \cos 2u) du = \frac{u}{3}$ $\frac{u}{3} - \frac{\sin 2u}{6}$ $\frac{12u}{6}$ ₀ $\frac{\pi}{\pi}=\frac{\pi}{2}$ $\frac{\pi}{3}$. The graph of $r =$ 3 sin 4 θ has 8 petals, each with volume $\frac{1}{2} \int_0^{\pi/4} 9 \sin^2 4\theta \ d\theta = \frac{9}{16} \int_0^{\pi} 2 \sin^2 u \ du$. Using the double angle formula, this is $\frac{9}{16} \int_0^{\pi} (1 - \cos 2u) du = \frac{9u}{16}$ $\left[\frac{9u}{16} - \frac{9\sin 2u}{32}\right]_0^h$ $\frac{\pi}{\pi} = \frac{9\pi}{16}$ $\frac{9\pi}{16}$. The total area of all petals is $\frac{11\pi}{2}$ and there are 11 total petals, so the expected area of a single petal is $\frac{\pi}{2}$. 1 + 2 = 3.
- $\left(\begin{array}{c} 25 \end{array} \right)$ $y = x + \sin x$ and its inverse intersect at $x = 0$ and $x = \pi$. The functions are symmetric about the point (π, π) . The area of the whole region is twice the area of the region bounded by $y = x + \sin x$ and its inverse between $x = 0$ and $x = \pi$. Consider the square with opposite corners at the origin and (π, π) . Twice the area under the graph of $y = x + \sin x$ subtracted from the area of the square gives the negative of the area between $y = x + \sin x$ and its inverse by the Principle of Inclusion and Exclusion. We have $\int_0^{\pi} (x + \sin x) dx = \frac{x^2}{2}$ $\frac{c}{2} - \cos x \Big|_0$ π $=\frac{\pi^2}{2}$ $\frac{1}{2}$ – 2. The area bounded by $y = x +$ sin x and its inverse in the square is $2\left(\frac{\pi^2}{2}\right)$ $(\frac{\pi^2}{2} - 2) - \pi^2 = 4$, so the total area of the region is 8. The line tangent to the graph of $y = x^2$ at (a, a^2) has slope 2a and thus equation $y = 2ax - a^2$, or $-2ax + y + a^2 = 0$. The distance from (0,4) to this line is $\frac{4+a^2}{\sqrt{a^2+4}}$ $\frac{4\pi a}{\sqrt{4a^2+1}}$. The derivative of this is $2a(2a^2-7)$ $\frac{2a(2a^2-7)}{(4a^2+1)^{3/2}}$, which equals 0 at $a = \sqrt{\frac{7}{2}}$ $\frac{7}{2}$. Evaluated, this corresponds to a minimum distance of $\frac{\sqrt{15}}{2}$. By the Theorem of Pappus, the minimum volume is $\pi \cdot 2\pi \cdot \frac{\sqrt{15}}{2}$ $\frac{15}{2} = \pi^2 \sqrt{15}.$

 27) The lines intersect at the points (3,5), (1,4), and (6,1). The area of the triangle whose vertices are these points is $\frac{1}{2}$ 3 5 1 1 4 1 6 1 1 $\Big| = \frac{11}{2}$ $\frac{11}{2}$.

The volume rotating about the x-axis is $\pi \int_0^{\pi/2} x^2 \cos^2 x \, dx = \frac{\pi}{2}$ $\frac{\pi}{2} \int_0^{\pi/2} x^2 dx + \frac{\pi}{2}$ $\frac{\pi}{2} \int_0^{\pi/2} x^2 \cos 2x \, dx$ The first of these integrals is equal to $\frac{\pi^4}{4}$ $\frac{\pi}{48}$. The second integral can be solved by parts, equaling πx^2 sin 2x $rac{\sin 2x}{4}$ ₀ $\pi/2$ $-\frac{\pi}{2}$ $\frac{\pi}{2} \int_0^{\pi/2} x \sin 2x \, dx = \frac{\pi x \cos 2x}{4}$ $\frac{\frac{32}{4}}{4}$ $\frac{\pi}{2}$ - $\frac{\pi}{4}$ $\frac{\pi}{4} \int_0^{\pi/2} \cos 2x \, dx = -\frac{\pi^2}{8}$ $\frac{1}{8}$. Thus, the volume rotating about the *x*-axis is $\frac{\pi^4}{48}$ $\frac{\pi^4}{48} - \frac{\pi^2}{8}$ $\frac{\pi^2}{8}$. The volume rotating about the y-axis is $2\pi \int_0^{\pi/2} x^2 \cos x \, dx$. This can be solved by parts, equaling $2\pi x^2 \sin x \Big]_0^{\pi/2} - 4\pi \int_0^{\pi/2} x \sin x$ $\int_0^{\pi/2} x \sin x \, dx = \frac{\pi^3}{2}$ $\frac{1}{2}$ – $[4\pi x \cos x]_0^{\pi/2} - 4\pi \int_0^{\pi/2} \cos x \, dx = \frac{\pi^3}{2}$ $\frac{\pi^3}{2} - 4\pi$. The sum of the areas is $\frac{\pi^4}{48}$ $\frac{\pi^4}{48} + \frac{\pi^3}{2}$ $\frac{\pi^3}{2} - \frac{\pi^2}{8}$ $\frac{1}{8}$ – 4x, so $f(x) = \frac{x^4}{48}$ $\frac{x^4}{48} + \frac{x^3}{2}$ $rac{x^3}{2} - \frac{x^2}{8}$ $\frac{1}{8}$ – 4x. $f(12)$ can be calculated with the synthetic division. $1/48$ $1/2$ $-1/8$ 1/4 9 213/2 1230 1/48 3/4 71/8 205/2 1230

The remainder when 1230 is divided by 19 is 14.

- The limaçon's inner loop is where $2 + 4 \cos \theta = 0$, between $\theta = \frac{2\pi}{3}$ $\frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$ $\frac{\pi}{3}$. Integrating, 1 $\frac{1}{2} \int_{2\pi/3}^{4\pi/3} (2 + 4 \cos \theta)^2 d\theta = \int_{2\pi/3}^{4\pi/3} (8 \cos^2 \theta + 8 \cos \theta + 2) d\theta = \int_{2\pi/3}^{4\pi/3} (4 \cos 2\theta + 8 \cos \theta + 1) d\theta$ $2\pi/3$ 6) $d\theta = 2 \sin 2\theta + 8 \sin \theta + 6\theta \Big|_{2\pi/3}^{4\pi/3} = (8\pi - 3\sqrt{3}) - (4\pi + 3\sqrt{3}) = 4\pi - 6\sqrt{3}.$
- ∞) The foci of the ellipse are at $(1, -2i)$ and $(-3, i)$, which are a distance of 5 apart. The focal radius is $\frac{5}{2}$. The major axis is 6, so the semimajor axis has length 3. Solving $\left(\frac{5}{2}\right)$ $\left(\frac{5}{2}\right)^2 = 3^2 - r_2^2$ gives the length of the semiminor axis, $r_2 = \frac{\sqrt{11}}{2}$ $\frac{1}{2}$. The area of the ellipse is $\frac{3\pi\sqrt{11}}{2}$, so $A + B + C = 16$.