#0 Alpha Ciphering MA⊕ National Convention 2017

Simplify $(\sqrt[3]{71} - \sqrt[3]{65})(\sqrt[3]{5041} + \sqrt[3]{4615} + \sqrt[3]{4225})$

#0 Alpha Ciphering MA⊕ National Convention 2017

Simplify
$$(\sqrt[3]{71} - \sqrt[3]{65})(\sqrt[3]{5041} + \sqrt[3]{4615} + \sqrt[3]{4225})$$

#0 Alpha Ciphering MA⊕ National Convention 2017

Simplify
$$(\sqrt[3]{71} - \sqrt[3]{65})(\sqrt[3]{5041} + \sqrt[3]{4615} + \sqrt[3]{4225})$$

#0 Alpha Ciphering MA⊕ National Convention 2017

Simplify
$$(\sqrt[3]{71} - \sqrt[3]{65})(\sqrt[3]{5041} + \sqrt[3]{4615} + \sqrt[3]{4225})$$

#1 Alpha Ciphering

MAO National Convention 2017
Find the value(s) of *a* such that the system of equations has no real solution.

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^{2} - 14)z = a + 2 \end{cases}$$

#1 Alpha Ciphering MA® National Convention 2017

Find the value(s) of a such that the system of equations has no real solution.

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^{2} - 14)z = a + 2 \end{cases}$$

#1 Alpha Ciphering MA® National Convention 2017

Find the value(s) of *a* such that the system of equations has no real solution.

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^{2} - 14)z = a + 2 \end{cases}$$

#1 Alpha Ciphering MAΘ National Convention 2017

Find the value(s) of a such that the system of equations has no real solution.

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^{2} - 14)z = a + 2 \end{cases}$$

#2 Alpha Ciphering MA⊕ National Convention 2017

Find the value of *a* if

$$\log_a(10) + ... + \log_a(10^n) + ... + \log_a(10^{10}) = 110.$$

#2 Alpha Ciphering MA⊕ National Convention 2017

Find the value of *a* if

$$\log_a(10) + ... + \log_a(10^n) + ... + \log_a(10^{10}) = 110.$$

#2 Alpha Ciphering MA⊕ National Convention 2017

Find the value of *a* if

$$\log_a(10) + ... + \log_a(10^n) + ... + \log_a(10^{10}) = 110.$$

#2 Alpha Ciphering MA⊚ National Convention 2017

Find the value of *a* if

$$\log_a(10) + ... + \log_a(10^n) + ... + \log_a(10^{10}) = 110.$$

#3 Alpha Ciphering MA® National Convention 2017

If $\sin x + \cos x = -1$, find the value of $\sin^{2017} x + \cos^{2017} x$.

#3 Alpha Ciphering MA⊖ National Convention 2017

If $\sin x + \cos x = -1$, find the value of $\sin^{2017} x + \cos^{2017} x$.

#3 Alpha Ciphering MA⊖ National Convention 2017

If $\sin x + \cos x = -1$, find the value of $\sin^{2017} x + \cos^{2017} x$.

#3 Alpha Ciphering MA⊚ National Convention 2017

If $\sin x + \cos x = -1$, find the value of $\sin^{2017} x + \cos^{2017} x$.

#4 Alpha Ciphering MA⊕ National Convention 2017

Simplify $\ln[-(i\cos 1 + \sin 1)^2]$, where the natural logarithm is defined over the complex numbers and the imaginary part of the value is as close to 0 as possible.

#4 Alpha Ciphering MA⊖ National Convention 2017

Simplify $\ln \left[-(i\cos 1 + \sin 1)^2 \right]$, where the natural logarithm is defined over the complex numbers and the imaginary part of the value is as close to 0 as possible.

#4 Alpha Ciphering MA⊕ National Convention 2017

Simplify $\ln[-(i\cos 1 + \sin 1)^2]$, where the natural logarithm is defined over the complex numbers and the imaginary part of the value is as close to 0 as possible.

#4 Alpha Ciphering MA⊚ National Convention 2017

Simplify $\ln[-(i\cos 1 + \sin 1)^2]$, where the natural logarithm is defined over the complex numbers and the imaginary part of the value is as close to 0 as possible.

#5 Alpha Ciphering MA⊕ National Convention 2017

The product of the ages of a group of teenagers is 10584000. What is the sum of their ages?

#5 Alpha Ciphering MA⊕ National Convention 2017

The product of the ages of a group of teenagers is 10584000. What is the sum of their ages?

#5 Alpha Ciphering MA⊚ National Convention 2017

The product of the ages of a group of teenagers is 10584000. What is the sum of their ages?

#5 Alpha Ciphering MA⊚ National Convention 2017

The product of the ages of a group of teenagers is 10584000. What is the sum of their ages?

#6 Alpha Ciphering

MA⊕ National Convention 2017

Find the distance between the vertices of

$$r = \frac{32}{3 + 5\sin\theta}.$$

#6 Alpha Ciphering MA⊕ National Convention 2017

Find the distance between the vertices of

$$r = \frac{32}{3 + 5\sin\theta}.$$

#6 Alpha Ciphering MA⊖ National Convention 2017

Find the distance between the vertices of

$$r = \frac{32}{3 + 5\sin\theta}.$$

#6 Alpha Ciphering MA⊕ National Convention 2017

Find the distance between the vertices of

$$r = \frac{32}{3 + 5\sin\theta}.$$

#7 Alpha Ciphering MA⊕ National Convention 2017

Find the remainder when 2^{65536} is divided by 13.

#7 Alpha Ciphering MA⊕ National Convention 2017

Find the remainder when 2^{65536} is divided by 13.

#7 Alpha Ciphering MA⊚ National Convention 2017

Find the remainder when 2^{65536} is divided by 13.

#7 Alpha Ciphering MA⊕ National Convention 2017

Find the remainder when 2^{65536} is divided by 13.

#8 Alpha Ciphering MA⊕ National Convention 2017

Find the value of

$$\cos\left(\frac{\pi}{6}\right) + ... + \cos\left(\frac{n\pi}{6}\right) + ... + \cos\left(\frac{2017\pi}{6}\right).$$

#8 Alpha Ciphering MA⊕ National Convention 2017

Find the value of

$$\cos\left(\frac{\pi}{6}\right) + ... + \cos\left(\frac{n\pi}{6}\right) + ... + \cos\left(\frac{2017\pi}{6}\right).$$

#8 Alpha Ciphering MA⊕ National Convention 2017

Find the value of

$$\cos\left(\frac{\pi}{6}\right) + ... + \cos\left(\frac{n\pi}{6}\right) + ... + \cos\left(\frac{2017\pi}{6}\right).$$

#8 Alpha Ciphering MA⊕ National Convention 2017

Find the value of

$$\cos\left(\frac{\pi}{6}\right) + ... + \cos\left(\frac{n\pi}{6}\right) + ... + \cos\left(\frac{2017\pi}{6}\right).$$

#9 Alpha Ciphering MA⊕ National Convention 2017

The coefficients of the third and eleventh terms of the expansion of $(a+b)^n$ are the same (when the terms are written in descending power of a and n is a positive integer). Find the sum of the coefficient of the fifth term and all positive integral divisors of that coefficient.

#9 Alpha Ciphering MA⊕ National Convention 2017

The coefficients of the third and eleventh terms of the expansion of $(a+b)^n$ are the same (when the terms are written in descending power of a and n is a positive integer). Find the sum of the coefficient of the fifth term and all positive integral divisors of that coefficient.

#9 Alpha Ciphering MA⊚ National Convention 2017

The coefficients of the third and eleventh terms of the expansion of $(a+b)^n$ are the same (when the terms are written in descending power of a and n is a positive integer). Find the sum of the coefficient of the fifth term and all positive integral divisors of that coefficient.

#9 Alpha Ciphering MA⊕ National Convention 2017

The coefficients of the third and eleventh terms of the expansion of $(a+b)^n$ are the same (when the terms are written in descending power of a and n is a positive integer). Find the sum of the coefficient of the fifth term and all positive integral divisors of that coefficient.

#10 Alpha Ciphering MA⊕ National Convention 2017

If $(a+b+c+d+e+f+g)^5$ is expanded and simplified, how many terms will contain only three letters?

#10 Alpha Ciphering MA⊕ National Convention 2017

If $(a+b+c+d+e+f+g)^5$ is expanded and simplified, how many terms will contain only three letters?

#10 Alpha Ciphering MA⊕ National Convention 2017

If $(a+b+c+d+e+f+g)^5$ is expanded and simplified, how many terms will contain only three letters?

#10 Alpha Ciphering MA⊚ National Convention 2017

If $(a+b+c+d+e+f+g)^5$ is expanded and simplified, how many terms will contain only three letters?

#11 Alpha Ciphering MA⊖ National Convention 2017

Find the area enclosed by the triangle whose vertices are (1, 0, 4), (3, -3, 0), and (0, 1, 2).

#11 Alpha Ciphering MA⊕ National Convention 2017

Find the area enclosed by the triangle whose vertices are (1, 0, 4), (3, -3, 0), and (0, 1, 2).

#11 Alpha Ciphering MA⊚ National Convention 2017

Find the area enclosed by the triangle whose vertices are (1, 0, 4), (3, -3, 0), and (0, 1, 2).

#11 Alpha Ciphering MA⊚ National Convention 2017

Find the area enclosed by the triangle whose vertices are (1, 0, 4), (3, -3, 0), and (0, 1, 2).

#12 Alpha Ciphering MA⊕ National Convention 2017

A point is selected at random from inside a circle. Find the probability that the point is closer to the center of the circle than to the circle itself.

#12 Alpha Ciphering MA⊕ National Convention 2017

A point is selected at random from inside a circle. Find the probability that the point is closer to the center of the circle than to the circle itself.

#12 Alpha Ciphering MA⊚ National Convention 2017

A point is selected at random from inside a circle. Find the probability that the point is closer to the center of the circle than to the circle itself.

#12 Alpha Ciphering MA⊚ National Convention 2017

A point is selected at random from inside a circle. Find the probability that the point is closer to the center of the circle than to the circle itself.