ANSWERS :

SOLUTIONS :

- 1. $y = -\frac{3}{2}x + 12 \rightarrow 3x + 2y = 24$. Any non-zero multiple of this equation will result in a line parallel or coincident to the given line. **B**
- 2. First, find the displacement vectors from $(6, 1, 2)$: $\langle 4, -3, 0 \rangle$ and $\langle 0, 3, 1 \rangle$. Then find the cross product of these two vectors. This gives $\langle -3, -4, 12 \rangle$. Using the first point, we can find the equation of the plane: $-3(x-6)-4(y-1)+12(z-2)=0 \rightarrow -3x-4y+12z=2$. Finally, use the equation of the plane: $-3(x-6)-4(y-1)+12(z-2)=0 \rightarrow -3x-4y+12z=2$. Finally, use the point-to-plane formula: $\frac{13(1) + 12(1)}{\sqrt{3^2 + 4^2 + 12^2}}$ $\frac{3(1) - 4(1) + 12(1) - 2}{\sqrt{3^2 + 4^2 + 12^2}} = \frac{3}{13},$ oint-to-plane formula: $\frac{|-3(1) - 4(1) + 12(1) - 2|}{\sqrt{3^2 + 4^2 + 12^2}} = \frac{3}{13}$, **A**.

θ = −140°, the value of *r* must be -3. **A**
 $\overline{21} = \sqrt{r^2 + 5^2 - 2(5) r \cos 60^\circ} = \sqrt{r^2 - 5r + 25} \rightarrow r^2 - 5r + 25 = 21 \rightarrow (r - 4)(r - 1) = 0 \rightarrow r =$
- 3. If $\theta = -140^\circ$, the value of *r* must be -3. A

4.
$$
\sqrt{21} = \sqrt{r^2 + 5^2 - 2(5)r\cos 60^\circ} = \sqrt{r^2 - 5r + 25} \rightarrow r^2 - 5r + 25 = 21 \rightarrow (r - 4)(r - 1) = 0 \rightarrow r = 1, 4.
$$
 C

5. The side lengths are
$$
2\sqrt{10}
$$
, $4\sqrt{10}$, and $6\sqrt{10}$, which cannot form a triangle. **E**
\n6. $y = \frac{x^4 + x^3 - 9x^2 - 3x + 18}{x^3 + 3x^2 - 4x - 12} = \frac{(x+3)(x-2)(x^2-3)}{(x+3)(x-2)(x+2)} \rightarrow \frac{x^2-3}{x+2}$. Cross-multiplying, we get
\n $xy + 2y - x^2 + 3 = 0 \rightarrow x^2 - xy - 2y - 3 = 0 \rightarrow x = \frac{-y \pm \sqrt{y^2 - 4(1)(-2y-3)}}{2} = \frac{-y \pm \sqrt{y^2 + 8y + 12}}{2} = \frac{-y \pm \sqrt{y^2 + 8y + 12}}{2} = \frac{-y \pm \sqrt{(y+6)(y+2)}}{2}$. From here, the domain of the radical expression

should give the range of the original function: $(-\infty, -6] \cup [-2, \infty)$; however, there is a removable discontinuity at $(-3, -6)$, so the range is actually $(-\infty, -6) \cup [-2, \infty)$, **E**.

- 7. $\frac{2-3}{2}$ = x - 2 + $\frac{1}{2}$, $\frac{x}{2} = x - 2 + \frac{1}{x + 2}$ $y = \frac{x^2 - 3}{2} = x$ $\frac{x+2}{x+2}$ = $x - 2 + \frac{1}{x}$ $=\frac{x^2-3}{2}$ = x - 2 + -- $\frac{1}{x+2}$ = $x-2+\frac{1}{x+2}$, so the slant asymptote is $y=x-2$. The vertical asymptote is $x=-2$. $ac + b = (1)(-2) - 2 = -4$, **D**.
- 8. The two line intersect at $y = 2.5$ and have opposite slopes, so $y = 2.5$ is the angle bisector. **B**
- 9. $ac + b = (1)(-2) - 2 = -4$, **D**.
The two line intersect at $y = 2.5$ and have opposite slopes, so $y = 2.5$ is the angle bisector. **B**
 $\cos 2\theta - 2\sin 2\theta = 0 \rightarrow \cos^2 \theta - \sin^2 \theta - 2\sin \theta \cos \theta = 0 \rightarrow r^2 \cos^2 \theta - r^2 \sin^2 \theta - r^2 \sin \theta \cos \theta = 0 \rightarrow$ $x^2 - y^2 - 4xy = 0$, **C**.
- 10. The plane will intersect both cones, making a hyperbola C.
- 11. The displacement vector from *A* to *B* is $\langle 4, \frac{3}{5} \rangle$. 2 If *AB*:*PB* = 4, then *P* is located three-fourths of the distance from *A* to *B*. $\left(\frac{3}{4}\right)\left\langle 4, \frac{3}{2}\right\rangle = \left\langle 3, \frac{9}{2}\right\rangle$, $\frac{1}{4}$ $\left\langle \frac{4}{3} \right\rangle$ $\left\langle \frac{3}{2} \right\rangle$ $\frac{1}{8}$ $(3)/$ $\left(\frac{3}{4}\right)\left\langle 4,\frac{3}{2}\right\rangle = \left\langle 3,\frac{3}{8}\right\rangle$, so we need to add these values to the coordinates of *A*. $\left(-1+3,\frac{5}{2}+\frac{9}{8}\right)=\left(2,\frac{29}{8}\right)$, $\left(\frac{1}{2}+\frac{1}{8}\right) = \left(2, \frac{1}{8}\right)$ $\left(-1+3,\frac{5}{2}+\frac{9}{8}\right)=\left(2,\frac{29}{8}\right)$, **D**.

2022 Mu Alpha Theta National Convention Washington DC Alpha Analytic Geometry Answers and Solutions

:

12. We first need the constant to be 1, so
$$
\frac{7}{16}x^2 - \frac{3}{8}\sqrt{3}xy + \frac{13}{16}y^2 = 1.
$$
 Using the formula
$$
\frac{2\pi}{\sqrt{4ac-b^2}}
$$

16

$$
\frac{2\pi}{4\left(\frac{7}{16}\right)\left(\frac{13}{16}\right) - \left(\frac{3}{8}\sqrt{3}\right)^2} = \frac{2\pi}{\sqrt{\frac{91}{64} - \frac{27}{64}}} = 2\pi, \mathbf{D}.
$$

 $\sqrt[4]{\frac{4}{16} \sqrt[4]{16}}$ $-\left(\frac{1}{8}\sqrt[4]{3}\right)$ $\sqrt[4]{64}$ 64
13. $\tan 2\theta = \frac{-6\sqrt{3}}{7-13} = \sqrt{3} \rightarrow \theta = 30^{\circ}$, $x = \frac{\sqrt{3}}{2}x' - \frac{1}{2}y'$, $y = \frac{1}{2}x' + \frac{\sqrt{3}}{2}y'$. $\frac{-6\sqrt{3}}{7-13} = \sqrt{3} \rightarrow \theta = 30^{\circ}$, $x = \frac{\sqrt{3}}{2}x' - \frac{1}{2}y'$, $y = \frac{1}{2}x' + \frac{\sqrt{3}}{2}$ *x* = $\frac{\sqrt{3}}{2}$ *x* '- $\frac{1}{2}$ *y*', *y* = $\frac{1}{2}$ *x*[']+ $\frac{\sqrt{3}}{2}$ *y* − 16 $\sqrt{16}$ (8^{7}) $\sqrt{94}$ 64
 $\theta = \frac{-6\sqrt{3}}{7-13} = \sqrt{3} \rightarrow \theta = 30^{\circ}$, $x = \frac{\sqrt{3}}{2}x' - \frac{1}{2}y'$, $y = \frac{1}{2}x' + \frac{\sqrt{3}}{2}y'$. Substituting these values into the

original equation gives $4(x')^2 + 16(y')^2$ $4(x')^{2} + 16(y')^{2} - 16 = 0 \rightarrow \frac{x^{2}}{4} + y^{2} = 1.$ $(x')^{2} + 16(y')^{2} - 16 = 0 \rightarrow \frac{x^{2}}{4} + y^{2} = 1$. Minor axis length is 2, **A**. original equation gives $4(x')^2 + 16(y')^2 - 16 = 0 \rightarrow \frac{x^2}{4} + y^2 = 1$. Minor axis length is 2, **A**.
25x² + 16y² + 150x − 128y − 1119 = 0 → 25(x² + 6x + 9) + 16(y² − 8y + 16) = 1119 + 225 + 256 →

14.
$$
25x^2 + 16y^2 + 150x - 128y - 1119 = 0 \rightarrow 25(x^2 + 6x + 9) + 16(y^2 - 8y + 16) = 1119 + 225 + 256 \rightarrow
$$

$$
25(x+3)^2 + 16(y-4)^2 = 1600 \rightarrow \frac{(x+3)^2}{(y-4)^2} = 1
$$
 The directrices will be located at

$$
25(x+3)^2 + 16(y-4)^2 = 1600 \rightarrow \frac{(x+3)^2}{64} + \frac{(y-4)^2}{100} = 1.
$$
 The directrices will be located at $y = 4 \pm \frac{a^2}{64} = 4 \pm \frac{100}{6}$, the positive value being $\frac{62}{6}$, C.

$$
y=4\pm\frac{a^2}{c}=4\pm\frac{100}{6}
$$
, the positive value being $\frac{62}{3}$, C.

- 15. It is a property of odd functions that the product of two odd functions is even. **B**
- 16. The given vectors are the displacement vectors used in problem 2. The magnitude of their cross-product is 13, so the area is 13, **B**.
- 17. From the given information, we can see that the hyperbola is vertical and $a=3$, giving us

$$
\frac{(y-2)^2}{9} - \frac{(x-5)^2}{b^2} = 1.
$$
 The slope of the asymptote is $\frac{a}{b}$, so $\frac{2}{1} = \frac{3}{b} \rightarrow b = \frac{3}{2}$. $a^2 + b^2 = c^2 = \frac{45}{4}$, so $c = \frac{3}{2}\sqrt{5}$, **B**.

- 18. The denominator must contain the coordinates of a displacement vector or a non-zero multiple of those coordinates. Choice A does not have that. All the numerators in the choices are $x - y - z - a$ point that the line passes through. In the case of D, the midpoint between the given points. **A**
- given points. **A**
19. $(mx+k)^2 = 4px \rightarrow m^2x^2 + (2km-4p)x+k^2 = 0$. We need to find where the discriminant is 0. $(2km-4p^2)^2-4(m^2)(k^2)$ $mx + k$ ² = 4px → $m^2x^2 + (2km - 4p)x + k^2 = 0$. We need to find
 $2km - 4p^2$ ² - 4 $\left(m^2\right)\left(k^2\right) = 0 \rightarrow -16kmp + 16p^2 = 0 \rightarrow k = \frac{p}{m}$, **D**.
-

20. The first equation generates a circle. The other three generate 8-petal rose. **C** 21. The intercepts are
$$
\left(-\frac{k}{2}, 0\right)
$$
 and $\left(0, -\frac{k}{3}\right)$. $27 = \frac{1}{2}\left(-\frac{k}{2}\right)\left(-\frac{k}{3}\right) \rightarrow k^2 = 324 \rightarrow |k| = 18$, **C**.

22. Let *A*(4, –1, 3) and *B*(5, –1, 4), and let *PQ* be the projection on the plane. Then, $\overline{AB} = \langle 1,0,1 \rangle$. Let θ be the angle between the $\langle 1,1,1\rangle$ normal vector and *AB*. $\cos \theta = \frac{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + 1^2 + 1^2}}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + 1^2 + 1^2}}$ $(1,1,1)$ normal ve
1,1,1) \cdot (1,0,1) $\sqrt{6}$ $\cos \theta = \frac{\langle 1, 1, 1 \rangle \cdot \langle 1, 0, 1 \rangle}{\sqrt{1^2 + 2^2 + 3^2 + 4^2 + 4^2}} = \frac{\sqrt{6}}{3},$ $\frac{\sqrt{1,1,1}^{\sqrt{1,0,1}}}{1^2 + 1^2 + 1^2 \sqrt{1^2 + 0^2 + 1^2}} = \frac{\sqrt{6}}{3}$ $\theta = \frac{\langle 1,1,1\rangle \cdot \langle 1,0,1\rangle}{\sqrt{1^2 + 2^2 + 3^2 + 4^2 + 4^2}} = \frac{\sqrt{6}}{2},$ $\frac{\sqrt{1,1,1}\sqrt{6}\sqrt{1,0,1}}{+1^2+1^2\sqrt{1^2+0^2+1^2}} = \frac{\sqrt{6}}{3}$, so $\sin \theta = \frac{\sqrt{3}}{2}$. 3 $\sqrt{1 + 1 + 1} \sqrt{1 + 0 + 1}$
 $\theta = \frac{\sqrt{3}}{2}. \sin \theta = \frac{PQ}{AP} \rightarrow \frac{\sqrt{3}}{2} = \frac{PQ}{P} \rightarrow PQ = \frac{\sqrt{6}}{2},$ $\frac{13}{3} = \frac{PQ}{\sqrt{2}} \rightarrow PQ = \frac{\sqrt{6}}{3}$ $\frac{PQ}{PQ}$ $\rightarrow \frac{\sqrt{3}}{2} = \frac{PQ}{F}$ $\rightarrow PQ$ $\theta = \frac{PQ}{AB} \rightarrow \frac{\sqrt{3}}{3} = \frac{PQ}{\sqrt{2}} \rightarrow PQ = \frac{\sqrt{6}}{3}, \mathbf{B}.$

2022 Mu Alpha Theta National Convention Washington DC

Alpha Analytic Geometry Answers and Solutions
\n23.
$$
t = \frac{y-1}{2} \rightarrow x = 3\left(\frac{y-1}{2}\right)^2 = \frac{3}{4}(y^2 - 2y + 1) \rightarrow 3y^2 - 4x - 6y + 3 = 0
$$
, E.
\n24. $\text{comp. } \mathbf{a} = \frac{a \cdot b}{2} = \frac{8+6}{4} = \frac{14\sqrt{13}}{12}$

24. $\text{comp}_{\mathbf{b}}\mathbf{a} = \frac{a \cdot b}{|b|} = \frac{8+6}{\sqrt{1-c}} = \frac{14\sqrt{13}}{12}$ $\frac{14}{4+9} = \frac{14}{13}$ *b* $_{\mathbf{b}}\mathbf{a} = \frac{a \cdot b}{|b|} = \frac{8+6}{\sqrt{4+9}} = \frac{14\sqrt{13}}{13}$, C.

- 25. The midpoint is (–2, 4) and the slope between the given points is –1/3, so the slope of the 25. The midpoint is $(-2, 4)$ and the stope between the given points
perpendicular bisector is 3. $y-4=3(x+2)$ → 3x – y + 10 = 0, **B**.
- 26. $\vec{a} \cdot \vec{b} = 0$, so \vec{a} and \vec{b} are perpendicular. Since they are also unit vectors, $|\vec{a}| = |\vec{b}| = 1$. Since they are perpendicular, the angle α between them is 90°. We also know that, by definition, $|\vec{a}\times\vec{b}| = |\vec{a}||\vec{b}|\sin\alpha$; since $\alpha = 90^\circ$, we have $|\vec{a}\times\vec{b}| = |\vec{a}||\vec{b}| = 1$. We also know that the dot product of a vector with itself is 1, and that the cross product of two vectors gives a vector perpendicular to those two vectors. Therefore, the dot product of either vector with its cross product will be 0. $(\vec{c} \cdot \vec{c}) = 2^2 = 4 = (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b}))(x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) = (x^2 + 0 + 0) + (0 + y^2 + 0) + (0 + 0 + |\vec{a} \times \vec{b}|).$ $|a \times b| = |a||b| \sin \alpha$; since $\alpha = 90$, we have $|a \times b| = |a||b| = 1$. We also know that the dot product of a
vector with itself is 1, and that the cross product of two vectors gives a vector perpendicular to
those two vectors. T $\vec{c} \cdot \vec{c} = 2^2 = 4 = (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) = (x^2 + 0 + 0) + (0 + y^2 + 0) + (0 + 0 + |\vec{a} \times \vec{b}|) =$
 $x^2 + y^2 + 1 \rightarrow x^2 + y^2 = 3.$ $\vec{a} \cdot \vec{c} = |\vec{a}||\vec{c}|\cos\theta = \vec{a} \cdot (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) = (1)(2)\cos\$ $x^2 + y^2 + 1 \rightarrow x^2 + y^2 = 3.$ $\vec{a} \cdot \vec{c} = |\vec{a}||\vec{c}|\cos\theta = \vec{a} \cdot (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) = (1)(2)\cos\theta = x + 0 + 0 \rightarrow$
 $x = 2\cos\theta.$ $\vec{b} \cdot \vec{c} = |\vec{b}||\vec{c}|\cos\theta = \vec{b} \cdot (x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})) = (1)(2)\cos\theta = 0 + y + 0 \rightarrow y = 2\cos\theta.$ $x^2 + y^2 = 3 \rightarrow 4 \cos^2 \theta + 4 \cos^2 \theta = 3 = 8 \cos^2 \theta$, A.
- 27. The given vector has length $\sqrt{4+36+9}=7$, so multiply each coordinate by -5/7. **C**
- 28. The centroid divides the distance from the orthocenter to the circumcenter in a ratio of 2:1. The *x*-coordinates of the orthocenter and centroid increase by 6, so the distance from centroid to circumcenter increases by 3; likewise, the *y*-coordinates decrease by 2, so the distance from centroid to circumcenter decreases by 1. This lands the circumcenter at *C*(6, 2).

$$
AC = \sqrt{90} = 3\sqrt{10}
$$
, so the radius is $\frac{3}{2}\sqrt{10}$, **B**.

29. 15 4 1 4 $\frac{15}{4 + \cos \theta} = \frac{\frac{15}{4}}{1 + \frac{1}{4} \cos \theta},$ $r = \frac{15}{4} = \frac{1}{2}$ $\frac{15}{1+\cos\theta} = \frac{4}{1+\frac{1}{4}\cos\theta}$, so we have a horizontal ellipse. The vertices will be at $(3, 0)$ and

 $(5, \pi)$, which are 8 units apart. $\, {\bf D}$

30. *AB* is the chord of contact. If we plug in (0, 3) we will get the equation of the chord and the *y* so. *AB* is the chord of contact. If we plug in (0, 3) we will get the equation of the chord and coordinates of the endpoints of the chord of contact: $4(0)(x) - (3)(y) = 36 \rightarrow y = -12$.

$$
4x^2 - (-12)^2 = 36 \rightarrow x^2 = 45 \rightarrow x = \pm 3\sqrt{5}
$$
. Now we have area $=\frac{1}{2}(6\sqrt{5})(15) = 45\sqrt{5}$, B.