1. Which of the following lines is parallel to  $y = -\frac{3}{2}x + 12$ ?

A. 2y = -6x + 24 B. 6x + 4y = 18 C. 2x - 3y = -12

D. 4x + 6y = 9

E. NOTA

2. Find the distance from the point (1, 1, 1) to the plane that contains the points (6, 1, 2), (2, 4, 2), and (6, -2, 1).

B.  $\frac{10}{13}$ 

C.  $\frac{3}{5}$  D.  $\frac{4}{5}$ 

E. NOTA

3. Which of the following polar coordinates does not represent the polar point  $(3, 40^{\circ})$ ?

A.  $(-3, -140^{\circ})$ 

B.  $(3,400^{\circ})$  C.  $(-3,220^{\circ})$ 

D.  $(3, -320^{\circ})$ 

E. NOTA

4. There are two values of r for which the distance from  $(5,80^\circ)$  to  $(r,20^\circ)$  is  $\sqrt{21}$ . Find the positive difference between these two values of *r*.

A. 1

B. 2

D. 4

E. NOTA

5. Identify the type of triangle whose vertices are located at (1, 10), (-3, -2), and (3, 16).

A. isosceles

B. right

C. scalene

D. equilateral

E. NOTA

6. Find the range of  $y = \frac{x^4 + x^3 - 9x^2 - 3x + 18}{x^3 + 3x^2 - 4x - 12}$ . A.  $[-2, \infty)$  B.  $(-\infty, -6] \cup$  C. [-6, -2] D.  $(-\infty, -4] \cup$  E. NOTA  $[-2, \infty)$ 

7. The graph of  $y = \frac{x^4 + x^3 - 9x^2 - 3x + 18}{x^3 + 3x^2 - 4x - 12}$  has slant (oblique) asymptote y = ax + b and vertical asymptote x = c. Find the value of ac + b.

A. 0

B. -1 C. -3.5

D. -4

E. NOTA

8. Find the equation of the line that bisects the acute angle formed by x-2y+3=0 and x+2y-7=0.

A. x = 2

B. y = 2.5

C. 2x-2y+1=0 D. 3x+2y-1=0 E. NOTA

9. Find the Cartesian form of the polar equation  $\cos 2\theta - 2\sin 2\theta = 0$ .

A.  $x^2 + 4xy -$  B.  $x^2 - 4xy -$  C.  $x^2 + 8xy -$  D.  $x^2 - 4xy y^2 = 0$   $y^2 = 0$   $y^2 = 0$ 

E. NOTA

- 10. Which conic section is the intersection between a plane and a double napped cone where the plane is perpendicular to a circular cross section of the cone?
  - A. a parabola
- B. an ellipse
- C. a hyperbola
- D. circle
- E. NOTA
- 11. Find the coordinates of point *P* that lies between points  $A\left(-1,\frac{5}{2}\right)$  and B(3,4) given AB:PB=4.
  - A.  $\left(-\frac{1}{5}, \frac{14}{5}\right)$  B.  $\left(\frac{1}{2}, \frac{13}{8}\right)$  C.  $\left(0, \frac{23}{8}\right)$  D.  $\left(2, \frac{29}{8}\right)$

- E. NOTA

- 12. Find the area of the ellipse  $7x^2 6\sqrt{3}xy + 13y^2 16 = 0$ .
- B.  $\frac{\pi}{6}$  C.  $\frac{13\pi}{7}$
- D. 2π
- E. NOTA
- 13. Find the length of the major axis of  $7x^2 6\sqrt{3}xy + 13y^2 16 = 0$ .
  - A. 2
- B. 4
- C. 2√3
- E. NOTA
- 14. The graph of  $25x^2 + 16y^2 + 150x 128y 1119 = 0$  generates a conic with directrix of y = d, where d > 0. Find the value of d.
  - A. 16
- C.  $\frac{62}{3}$
- D. 18
- E. NOTA

- 15. The product of two odd functions is:
  - A. odd
- B. even
- C. neither
- D. not enough information
- E. NOTA
- 16. Find the area of parallelogram *ABCD* with  $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix}$  and  $\overrightarrow{BC} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ .
  - A. 6.5
- B. 13
- C. 59.5
- E. NOTA
- 17. A hyperbola has its center at (5, 2), a vertex at (5, 5), and an asymptote with equation y = 2x - 8. Find the distance from the center to one of the foci.
  - A.  $\frac{9}{4}\sqrt{17}$
- B.  $\frac{3}{2}\sqrt{5}$
- C.  $\frac{3}{2}\sqrt{3}$
- D. 3√5
- E. NOTA
- 18. Which of the following equations do not represent the line that passes through (2, -1, 3) and
  - A.  $\frac{x-1}{2} = \frac{y-4}{-1} = \frac{z+3}{3}$
- B.  $\frac{x-2}{1} = \frac{y+1}{-5} = \frac{z-3}{6}$
- C.  $\frac{z-1}{6} = \frac{y-4}{-30} = \frac{z+3}{36}$ D.  $\frac{x-1.5}{-8} = \frac{y-1.5}{40} = \frac{z}{-48}$
- E. NOTA

- 19. Find *k*, in terms of *p* and *m*, if the line y = mx + k is tangent to the parabola  $y^2 = 4px$ .
- C.  $\frac{2m}{n}$
- D.  $\frac{p}{}$
- E. NOTA
- 20. How many of the following polar equations generate an 8-petal rose?

 $r = 8\cos\theta$ 

- $r = 8\sin 4\theta$
- $r = 8\cos 4\theta$
- $r = 8\sin 8\theta + 8$

- A. 1
- B. 2
- C. 3
- D. 4
- E. NOTA
- 21. Find the value of |k| in the equation 2x+3y+k=0 so that this line will form a triangle with the coordinate axes whose area is 27 square units.
  - A. 15
- B. 16
- C. 18
- D. 20
- E. NOTA
- 22. Find the length of the projection of the segment joining (4, -1, 3) and (5, -1, 4) onto the plane x + y + z = 7.

- A.  $\frac{2\sqrt{3}}{3}$  B.  $\frac{\sqrt{6}}{3}$  C.  $\frac{2\sqrt{6}}{3}$  D.  $\frac{4\sqrt{3}}{3}$
- E. NOTA
- 23. Find the rectangular equation for the curve represented by the parametric equations  $x = 3t^2$ and v = 2t + 1.

- A.  $2x^2 + 3y^2 1 = 0$  B. 2x 3y + 3 = 0 C. D.  $3y^2 4x + 1 = 0$  D.  $3y^2 4x 6y 3 = 0$  E. NOTA
- 24. Find comp<sub>b</sub>**a**, the scalar component of **a** along **b**, if  $\mathbf{a} = \langle 4, -2 \rangle$  and  $\mathbf{b} = \langle 2, -3 \rangle$ .

- A.  $\frac{7\sqrt{5}}{5}$  B.  $\frac{7\sqrt{65}}{65}$  C.  $\frac{14\sqrt{13}}{13}$  D.  $\frac{14\sqrt{65}}{65}$
- E. NOTA
- 25. Find the equation of the perpendicular bisector of the line segment joining (1, 3) and (-5, 5).
  - A. 3x y = 0

- B. 3x y + 10 = 0 C. x 3y 10 = 0 D. 3x + y + 10 = 0 E. NOTA
- 26. Let  $\vec{a}$  and  $\vec{b}$  be unit vectors such that  $\vec{a} \cdot \vec{b} = 0$ . For some  $x, y \in \mathbb{R}$ , let  $\vec{c} = x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})$ .
  - If  $|\bar{c}| = 2$  and  $\bar{c}$  is inclined at the same angle  $\theta$  to both  $\bar{a}$  and  $\bar{b}$ , what is the value of  $8\cos^2\theta$ ?
  - A. 3
- B. 4
- C. 6
- D. 8
- E. NOTA
- 27. Which of the following is a vector of length 5 in the opposite direction of the vector  $\langle -2, 6, -3 \rangle$ ?

- A.  $\left\langle \frac{14}{5}, -\frac{42}{5}, \frac{21}{5} \right\rangle$  B.  $\left\langle 10, -30, 15 \right\rangle$  C.  $\left\langle \frac{10}{7}, -\frac{30}{7}, \frac{15}{7} \right\rangle$  D.  $\left\langle \frac{10}{49}, -\frac{30}{49}, \frac{15}{49} \right\rangle$  E. NOTA

- 28. Let the orthocenter and centroid of a triangle be A(-3, 5) and B(3, 3), respectively. If C is the circumcenter of the triangle, then the radius of the circle having  $\overline{AC}$  as diameter is:
  - A.  $\frac{3}{2}\sqrt{5}$
- B.  $\frac{3}{2}\sqrt{10}$  C.  $\sqrt{10}$  D.  $2\sqrt{10}$
- E. NOTA

- 29. Find the distance between the vertices of  $r = \frac{15}{4 + \cos \theta}$ .
  - A. 2
- B.  $\frac{15}{4}$  C.  $\frac{15}{2}$
- D. 8
- E. NOTA
- 30. Tangents are drawn to the hyperbola  $4x^2 y^2 = 36$  at points *A* and *B*. If these tangents intersect
  - at C(0, 3), find the area in square units of  $\triangle ABC$ .
  - A.  $36\sqrt{5}$
- B.  $45\sqrt{5}$  C.  $54\sqrt{3}$
- D.  $60\sqrt{3}$
- E. NOTA