

- 1. Taking the derivative of our function, we get that $y'(x) = 2x$. Thus $y'(1) = 2$. Using point-slope form, $y - 5 = 2(x - 1) \rightarrow y = 2x + 3$. Thus the y-intercept is at [3].
- 2. The slope of the secant line is $\frac{f(2) f(1)}{2}$ $2 - 1$ $= 0$. We now calculate $f'(x) = 3x^2 - 10x + 8$. If we set these two quantities equal to each other, we get that the equation $3x^2 - 10x + 8 = 0$ is satisfied when $x=\frac{4}{3}$ $\frac{4}{3}$, 2. However, the Mean Value Theorem states that the c values cannot be the endpoints of the interval. Thus the Mean Value Theorem only guarantees $c =$ 4 3 .
- 3. This looks very similar to a Riemann sum interpretation of an integral, except now the sum goes to 2n. To address this, we can say that $m = 2n$ which will match the form we are looking for. Thus, our limit is equivalent to $\lim_{m\to\infty}$ $\sum_{i=1}^{m}$ $i=1$ $m/2$ $\frac{my}{i^2 + m^2/4} = \lim_{m \to \infty}$ 1 2m $\sum_{i=1}^{m}$ $i=1$ 1 $\frac{i^2}{m^2} + 1/4$. Now, we can convert this to an integral: $\frac{1}{2}$ 2 \int_0^1 0 dx $x^2 + \frac{1}{4}$ 4 = 1 2 \cdot 2 arctan $2x]_0^1 = \boxed{\arctan 2}$.
- We will go through each answer choice. Choice A is wrong since in the case $a = -1$, $b = 1$ and $f(x) = x^2$ the two tangent lines have the same y-intercept. Choice B is always wrong since the x^2 coefficient is nonzero since $f(x)$ is degree 2. When using the Mean Value Theorem of Integrals on a quadratic, we end up having to solve a cubic equation which could naturally have 3 potential solutions. For choice D, say that $f(x) = c_2x^2 + c_1x + c_0$ where $c_2 \neq 0$ and the coefficients are real. Using the Mean Value Theorem for Derivatives, we want to solve $2c_2x + c_1 =$ $c_2(b^2-a^2)+c_1(b-a)$ $b - a$. The right-hand side of the equation can be simplified to $c_2(b + a) + c_1$ since $\tilde{b} - a \neq 0$. This means our c value solves the equation $2c_2x + c_1 = c_2(b + a) + c_1$. We can now clearly see that this occurs when $x =$ $a + b$ 2 .
- 5. We want to evaluate \sum 20 $k=2$ $k(k-1)$ since $1^k = 1$ for all positive integers k. This sum can
	- be solved using the Hockey Stick Identity or be realizing that \sum 20 $k=2$ $k(k-1) = \sum$ 20 $k=2$ $k^2 - k =$ $(20 \cdot 21 \cdot 41)$ 6 − 1 \setminus − $(20 \cdot 21)$ 2 − 1 \setminus $= 2869 - 209 = |2660|$.
- 6. This is very similar to the previous question except now $(-1)^k = -1$ if k is an odd integer. This means we want to evaluate \sum 20 $k=2$ $k(k-1)(-1)^{k-1} = \sum_{k=1}^{k-1} k^k$ 10 $i=1$ $-(2i)(2i-1)+\sum$ 9 $j=1$ $(2j+1)(2j)$ where the first sum handles the even integers and the second sum handles the odd integers. Evaluating these like in question 5 gives us the answer is $-4 \cdot$ $10\cdot 11\cdot 21$ 6 $+2$. $10 \cdot \check{11}$ 2 $+$ 4 · $9 \cdot 10 \cdot 19$ 6 $+2$. $9 \cdot 10$ 2 $= |-200|$. √
- 7. Write the integral as \int_0^4 0 2 $\overline{4-x}$ 2 $\frac{1}{\sqrt{2}}$ \overline{x} dx. We do this because now the u-substitution $u =$ √ \overline{x} transforms our integral to \int_1^2 0 2 √ $\sqrt{4-u^2}du=2\cdot\frac{1}{4}$ 4 $\cdot 4\pi = |2\pi|$ since we are finding the area of a quarter circle.
- 8. To approximate the area bounded by $f(x)$ and the x-axis with rectangles of length $5 - 1$ 4 $= 1$, we just need to find $|f(1)| + |f(2)| + |f(3)| + |f(4)| = \ln(2) + \ln(\frac{7}{2})$ $(\frac{7}{2}) + \ln(\frac{17}{2})$ $\frac{17}{2}$ + $\ln\left(\frac{31}{2}\right)$ $\frac{31}{2}$) = $\ln \left(\frac{3689}{4} \right)$ 4 \setminus .
- 9. Let us find $f'(x)$ first. We see that $f'(x) = e^{2e^{3e^x}} \cdot \frac{d}{dx} 2e^{3e^x} = e^{2e^{3e^x}} \cdot 2e^{3e^x} \cdot \frac{d}{dx} 3e^x =$ $e^{2e^{3e^x}} \cdot 2e^{3e^x} \cdot 3e^x$. Plugging in $x = \ln(\ln(2))$ gives us $e^{2e^{3\ln 2}} \cdot 2e^{3\ln 2} \cdot 3\ln 2 = e^{2 \cdot 8} \cdot 2 \cdot 8 \cdot 3\ln 2 =$ 48e 16 ln 2.
- 10. We first need to find $\frac{dy}{dx}$ $\frac{dy}{dx}$. Taking the derivative of our equation gives us that $y^2 + 2xy\frac{dy}{dx}$ $\frac{dy}{dx} +$ $2x + 3y^2 \frac{dy}{dx} = 1 \rightarrow \frac{dy}{dx}$ $\frac{dy}{dx} =$ $1 - 2x - y^2$ $\frac{(-2x-y^2)}{2xy+3y^2}$. In addition, $\frac{dy}{dx}|_{(1,-1)} = -2$. Now, $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} =$ d dx dy $\frac{dy}{dx} =$ $(2xy+3y^2)(-2-2y\frac{dy}{dx}) - (2y+2x\frac{dy}{dx}+6y\frac{dy}{dx})(1-2x-y^2)$ $\frac{(-9 + 20)}{(2xy + 3y^2)^2}$ by the quotient rule. Since we know the values of everything in this equation at the point $(1, -1)$, we get the answer as $(1)(-6) - (6)(-2)$ $\frac{(8)(1-2)}{1^2} = -6 + 12 = 6.$
- 11. We want to find all $f(x)$ that satisfy \int_1^1 0 $f(x)dx = \int_0^1$ $\overline{0}$ $\sqrt{1 + (f'(x))^2} dx$. As a start, let's try to find all functions that satisfy $f(x) = \sqrt{1 + (f'(x))^2}$ since that would imply both integrals are equal. Squaring both sides and differentiating with respect to x gives us that $2f(x)f'(x) = 2f'(x)f''(x)$. Thus $f'(x) = 0$ or $f(x) = f''(x)$. In the first case, $f'(x) = 0 \rightarrow f(x) = c > 0$. Plugging this into our original equation gives us that $c = \sqrt{1 + 0^2} = 1$. Thus $f(x) = 1$ is our first function that works. Now onto the second case. If we say that $f(x) = e^{rx}$, then $f''(x) - f(x) = 0$ is equivalent to finding the r values that solve $r^2 - 1 = 0$. These r values are clearly $\{-1, 1\}$. Thus we get that $f(x) = c_1 e^x + c_2 e^{-x}$ satisfies our differential equation. We now must plug it back in,

.

 $(c_1e^x + c_2e^{-x})^2 = 1 + (c_1e^x - c_2e^{-x})^2 \rightarrow c_1c_2 = \frac{1}{4}$ 4 . Thus we have infinitely many functions that work of the form $f(x) = ae^x + \frac{1}{4}$ 4a e^{-x} where $a \in \mathbb{R}^+$ (to ensure that $f(x)$ is never negative). Finally, the answer is None Of The Above since there are infinitely many functions.

12. The formula for arc length over the given interval is $\int_{0}^{2\pi}$ 0 $\sqrt{\left(\frac{dx}{dt}\right)^2}$ $^{+}$ $\left(\frac{dy}{dt}\right)^2$ $dt =$ $\int^{2\pi}$ 0 $\sqrt{1-2\cos t+\cos^2 t+\sin^2 t}dt = \int_{0}^{2\pi}$ 0 √ $2-2\cos t$. However, using the half-angle formula, we see that our integral is equivalent to 2 $\int_{0}^{2\pi}$ 0 $\sqrt{1-\cos t}$ 2 $dt = 2 \int_0^{2\pi}$ 0 sin t 2 $dt =$ t

$$
-4\cos\frac{t}{2}\big]_0^{2\pi} = 4 + 4 = \boxed{8}.
$$

- 13. We want to find the r that satisfies $\frac{d}{dt}(\frac{4}{3})$ $\frac{4}{3}\pi r^3$) = $\frac{d}{dt}(4\pi r^2)$. Computing this gives us that $4\pi r^2 \frac{dr}{dt} = 8\pi r \frac{dr}{dt}$. Since $\frac{dr}{dt}$ is a positive constant, we can divide it from both sides and simplify to get that $r = 2$.
- 14. Given the information in the problem statement, we know that $\det(M(x, x^2, x^3))$ = $(x^{3}-x)(x^{3}-x^{2})(x^{2}-x)$. Taking the derivative with the product rule gives us d $\frac{d}{dx}[\det(M)] = (x^3-x)(x^3-x^2)(2x-1)+(x^3-x)(3x^2-2x)(x^2-x)+(3x^2-1)(x^3-x^2)(x^2-x).$ Plugging in $x = 2$ gives us $(6)(4)(3) + (6)(8)(2) + (11)(4)(2) = 72 + 96 + 88 = 256$. 15. Using the disk method, our volume is simply $\pi \int_1^1$
- 0 $\ln^4(x)dx$. If we use integration by parts with $u = \ln^4(x)$ and $dv = 1$, then our integral equals $\pi(x \ln^4(x))_0^1$ \int_1^1 0 $4\ln^3(x)dx$ = $-4\pi \int_{0}^{1} \ln^{3}(x) dx$. If we do a very similar process a couple more times, we get that 0 $-4\pi \int_0^1$ 0 $\ln^3(x)dx = 12\pi \int_0^1$ 0 $\ln^2(x)dx = -24\pi \int_0^1$ 0 $\ln(x)dx = -24\pi[x\ln(x)-x]_0^1 = -24\pi(-1) =$ $\sqrt{24\pi}$
- 16. It is known that $\frac{dy}{dx}$ is simply $\frac{dy/dt}{dx/dt}$. Thus, the answer is simply $\frac{\sin t}{1-\cos t}$
- 17. We will use the closed interval method. First, we find that $f'(x) = \frac{(x^2+1)(1)-(x-1)(2x)}{(x^2+1)^2}$ $\frac{(x^2+1)^2}{(x^2+1)^2} =$ $-x^2 + 2x + 1$ $(x^2+1)^2$. The derivative is equal to 0 when $x \in \{1 + \sqrt{2}, 1 - \}$ √ 2}, however, the larger element is outside the interval $[-1, 1]$ so we can ignore it. Thus we now only need to compare the values of $f(-1)$, $f(1)$, $f(1-\sqrt{2})$. Doing so yields a maximum of 0 at $x = 1$

.

- 18. Let us assume there is a tangent point at $x = x_0$. This would mean that $e^{2x_0} = 2\sqrt{ex_0}$. In addition, the slope of the tangent line at $x = x_0$ must be equal. This would mean that $2e^{2x_0} = \sqrt{\frac{e}{x}}$ $\overline{x_0}$ We can now solve for x since $2e^{2x_0} = 2(e^{2x_0}) = 2(2\sqrt{ex_0}) = 4\sqrt{ex_0} =$ \sqrt{e} $\overline{x_0}$. Cross-multiplying and simplifying gives us that $x_0 =$ 1 4 . In addition, the y value associated with this x is \sqrt{e} . Finally, this means the answer is $\frac{1}{4}$ 4 · √ $\overline{e} =$ √ e 4 .
- 19. Let us find a closed form for $f(x)$ first. $f(x) = \sqrt{x + f(x)} \rightarrow (f(x))^2 f(x) = x$. Completing the square gives us that $(f(x) - \frac{1}{2})$ 2 $(x)^2 = x + \frac{1}{4}$ 4 $\rightarrow f(x) = \sqrt{x + y^2}$ 1 4 $+$ 1 2 . This means that the average value of $f(x)$ over the interval [2, 6] is

$$
\frac{1}{6-2} \int_2^6 \sqrt{x+\frac{1}{4}} + \frac{1}{2} dx = \frac{1}{4} (\frac{2}{3} (x+\frac{1}{4})^{3/2} + \frac{x}{2}]_2^6).
$$

This can be evaluated to $\frac{1}{4}$ 4 (125 12 $+3-\frac{9}{4}$ 4 $(-1) = \frac{1}{4}$ 4 $\cdot \frac{61}{6}$ 6 = 61 24

- 20. This is a linear differential equation. If we multiply our equation by $e^{\int -1 dx} = e^{-x}$, we get that $e^{-x}(y'-y) = \frac{1}{1+y}$ $\frac{1}{1+x^2}$. However, notice that the left-hand side of the equation equals $(ye^{-x})'$. Thus if we integrate both sides we get that $ye^{-x} = \arctan x + C$ which means that $y = e^x \arctan(x) + Ce^x$. Since $y(0) = 0$, we find that $C = 0$. Thus, $y = e^x \arctan(x)$ and $y(1) = e^1 \arctan(1) = \sqrt{\frac{\pi e}{4}}$ 4 .
- 21. This is a separable equation. We can say that $\frac{dy}{dx}$ \hat{y} $= e^x dx$. Integrating both sides means that $\ln|y| = e^x + C$. Plugging in the point $(0, 1)$ means that $C = -1$. Thus $\ln(y) = e^x - 1$. Plugging in $x = 1$ gives us that $ln(y) = e - 1$ or that $|y = e^{e-1}|$.
- 22. We could do calculus to find this volume. However, it is much simpler to notice that the shape we create is a hemisphere of radius 2. The volume of a hemisphere is $\frac{2}{3}$ 3 πr^3 . Thus,

our answer is
$$
\frac{2}{3}\pi \cdot 8 = \left\lfloor \frac{16\pi}{3} \right\rfloor
$$
.

23. We will go through each choice. Choice I diverges because $\sin^2 x > k > 0$ enough of the time to make the integrand look like $\frac{k}{x}$ as x grows large which would diverge. Choice II diverges because at 0, the quantity is undefined and the power of the 0 in the denominator is at least 1. Choice III converges and with a u-substitution of $u =$ 1 $\sqrt{-\ln(x)}$, the integral turns into a multiple of \int_{0}^{∞} 0 $e^{-x^2}dx$. Choice IV diverges because as x grows large, the integrand looks like $\frac{1}{\sqrt{x}}$ which would diverge. Thus III is the only convergent integral.

- 24. While one could use integration by parts and bash this out, the trick here is to realize what is given to us. The integral present is the remainder term of a Maclaurin series for a function that has been approximated to the x^3 power evaluated at $x = 1$. Subtracting this from our function means we want to find the cubic approximation for $f(x) = \sin(x)$ at $x = 1$. Since $\sin x \sim x - \frac{x^3}{6}$ 6 , this is simply $1-\frac{1^3}{6}$ 6 = 5 6 .
- 25. It is pretty well-known that the Maclaurin series of $f(x) = -\ln(1-x)$ is $\sum_{n=0}^{\infty}$ $n=1$ x^n n when $x \in [-1, 1)$. All we have to do is plug in $x = \frac{1}{2}$ 2 to get that the answer is $-\ln\left(1-\frac{1}{2}\right)$ 2 $= -\ln\left(\frac{1}{2}\right)$ 2 \setminus $=$ $\ln(2)$.
- 26. First we will start with the sine triple angle formula. Using complex numbers, $sin(3x) =$ $\text{Im}[(\cos x + i \sin x)^3] = 3 \cos^2 x \sin x - \sin^3 x = 3 \sin x - 4 \sin^3 x$. Thus we can isolate $\sin^3 x = \frac{3\sin x - \sin 3x}{4}$ 4 . Now onto the integral.

$$
\int_0^\infty \frac{\sin^3 x}{x} dx = \int_0^\infty \frac{3 \sin x - \sin 3x}{4x} dx = \frac{3}{4} \cdot \frac{\pi}{2} - \frac{1}{4} \int_0^\infty \frac{\sin 3x}{x} dx
$$

Set $u = 3x$. This means that our integral equals $\frac{3\pi}{6}$ 8 $-\frac{1}{4}$ 4 \int^{∞} 0 $\sin u$ \overline{u} $du =$ 3π 8 $-\frac{\pi}{2}$ 8 = π 4 .

27. The x-coordinate of the centroid is given by $\int_a^b x f(x) dx$ $\int_a^b f(x)dx$. Doing this gives us the answer

is

$$
\frac{\int_0^a a^2x - x^3 dx}{\int_0^a a^2 - x^2 dx} = \frac{\frac{a^4}{2} - \frac{a^4}{4}}{a^3 - \frac{a^3}{3}} = \frac{\frac{a^4}{4}}{\frac{2a^3}{3}} = \boxed{\frac{3a}{8}}.
$$

- 28. The error occurs in $\boxed{\text{Line 2}}$. The first step is similar to the steps taken to solve question 26. However, this question differs from question 26 because at $x = 0$, our integral doesn't exist. Thus, while in question 26 we could split the integral into two separate integrals and solve, here, since neither of the two integrals in Line 3 independently exist, we cannot split the integral in the previous line.
- 29. Let us try to represent the region $y \le x \le 1$ and $0 \le y \le 1$ in a different way to make this integral solvable. Drawing the region quickly yields that this region can also be represented by $0 \le x \le 1$ and $0 \le y \le x$. Thus, by Fubini's Theorem, our integral equals \int_0^1 0 \int_0^x 0 $\sin x$ \overline{x} $dydx = \int_0^1$ 0 $\sin x dx = -\cos x]_0^1 = \boxed{1 - \cos 1}.$
- 30. We have that $\frac{d}{dx} \int_0^1$ e^x \overline{x} $dy =$ d dx e^x \overline{x} $[y]_0^1 =$ d dx e^x \overline{x} = $e^x(x-1)$ $\frac{x^2}{x^2}$. This is the answer.