Alpha Analytic Geometry

For all questions, NOTA means None Of These Answers.

- (1) Which of the following vectors is **not** perpendicular to $3\hat{i} + 2\hat{j} \hat{k}$?
 - (a) $\hat{i} + \hat{j} + 5\hat{k}$ (b) $-\hat{i} + \hat{j} \hat{k}$
 - (c) $\hat{\imath} \hat{\jmath} \hat{k}$ (d) $\hat{\imath} \hat{\jmath} + \hat{k}$ (e) NOTA

(2) What is the center of the conic described by the equation $9x^2 + 4y^2 - 90x + 16y + 205 = 0$?

- (a) (5,-2) (b) (5,2)
- (c) (-5,-2) (d) (-5,2) (e) NOTA

(3) What type of curve is described by the polar equation $r(\theta) = \frac{6}{3+2\cos(\theta)}$?

(a)	Lemniscate	(b)	Hyperbola

(c) Parabola (d) Ellipse (e) NOTA

(4) What is the area enclosed by the quadrilateral with vertices at the Cartesian points (1,0), (2,2), (0,3), and (-1,-1)?

(a)	6	(b)	2		
(c)	4	(d)	12	(e)	NOTA

- (5) A plane going through the Cartesian points (1,1,1), (0,2,1), and (1,0,2) also goes through the point (3,1, Q). Find Q.
 - (a) 0 (b) -1 (c) 1 (d) 2 (e) NOTA

(6) What type of curve is defined by the polar equation $r(\theta) = 1 - 2\sin^2(3\theta)$?

- (a) Limaçon with Inner Loop (b) Rose with Three Petals
- (c) Lemniscate (d) Rose with Six Petals (e) NOTA

(7) A conic section is described by the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. This equation can be re-written using a matrix; the resulting equation is of the form

 $\begin{bmatrix} x & y & 1 \end{bmatrix} \mathbf{M} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$, where \mathbf{M} is a 3 × 3 matrix. Which of the following matrices is \mathbf{M} ?

(a)
$$\begin{bmatrix} A & \frac{D}{2} & \frac{E}{2} \\ \frac{D}{2} & B & \frac{F}{2} \\ \frac{E}{2} & \frac{F}{2} & C \end{bmatrix}$$
 (b) $\begin{bmatrix} A & \frac{B}{2} & \frac{C}{2} \\ \frac{B}{2} & D & \frac{E}{2} \\ \frac{C}{2} & \frac{E}{2} & F \end{bmatrix}$
(c) $\begin{bmatrix} A & \frac{E}{2} & \frac{D}{2} \\ \frac{E}{2} & C & \frac{B}{2} \\ \frac{D}{2} & \frac{E}{2} & F \end{bmatrix}$ (d) $\begin{bmatrix} A & \frac{B}{2} & \frac{D}{2} \\ \frac{B}{2} & C & \frac{E}{2} \\ \frac{D}{2} & \frac{E}{2} & F \end{bmatrix}$ (e) NOTA

(8) Vectors \vec{v} and \vec{w} are such that $\vec{v} \cdot \vec{w} = 5$ and $\|\vec{v} \times \vec{w}\| = 2$. If θ is the acute angle between \vec{v} and \vec{w} , find $\sin(2\theta)$.

(a)	2 5	(b)	$\frac{2\sqrt{29}}{29}$		
(c)	<u>20</u> 29	(d)	$\frac{5\sqrt{29}}{29}$	(e)	NOTA

- (9) A parabola has a latus rectum that corresponds to one of the latera recta of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. What is the minimum possible distance between the directrix of the parabola and the center of the ellipse?
 - (a) $\frac{11}{5}$ (b) $\frac{18}{5}$ (c) $\frac{31}{10}$ (d) $\frac{9}{10}$ (e) NOTA

(10) Which of the following is the equation of a degenerate conic?

- (a) $x^2 + xy + y^2 + x + y + 1 = 0$ (b) xy 1 = 0
- (c) $x^2 + xy + y^2 1 = 0$ (d) $x^2 + 3xy + 2y^2 + y 1 = 0$

(e) NOTA

(11) Tyger accidently plots the polar point $\left(\pi, \frac{2\pi}{3}\right)$ as a Cartesian point. How far away is the point he plotted from the point he should have plotted?

(a)
$$\left(\frac{13}{6} - \frac{\sqrt{3}}{2}\right)\pi$$
 (b) $\frac{\pi}{3}\sqrt{17 - 6\sqrt{3}}$

(c)
$$\frac{\pi}{3}\sqrt{31-6\sqrt{3}}$$
 (d) $\frac{\pi}{3}\sqrt{13-6\sqrt{3}}$ (e) NOTA

Questions 12-14 relate to the non-degenerate conic defined by the equation

$$x^2 + xy + 2y^2 + 3x + 5y + 8 = 0.$$

(12) What can be said about the eccentricity *e* of this conic?

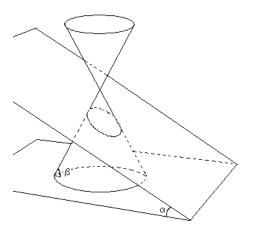
(a)
$$e = 0$$
 (b) $0 < e < 1$
(c) $e = 1$ (d) $e > 1$ (e) NOTA

(13) A second x'y'-coordinate system is formed by rotating the xy-coordinate counterclockwise by an angle $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ such that in the new coordinate system, this conic has an equation of the form $A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$. Find θ .

(a)
$$-\frac{\pi}{8}$$
 (b) $-\frac{\pi}{4}$
(c) $\frac{\pi}{8}$ (d) $\frac{\pi}{4}$ (e) NOTA

(14) A second x'y'-coordinate system is formed by rotating the xy-coordinate counterclockwise by an angle $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ such that in the new coordinate system, this conic has an equation of the form $A'x'^2 + C'y'^2 + D'x' + E'y' + F' = 0$. Find $\frac{A'+A'C'+C'}{E'}$.

(a)
$$\frac{5}{12}$$
 (b) $\frac{17}{56}$
(c) $\frac{5}{32}$ (d) $\frac{3}{8}$ (e) NOTA


(15) Find the area enclosed by a triangle with side lengths 15, 16, and 17.

(a)
$$26\sqrt{22}$$
 (b) $24\sqrt{14}$
(c) $28\sqrt{13}$ (d) $24\sqrt{21}$ (e) NOTA

(16) The line going through the Cartesian points (1,2,3) and (-1,0,2) also goes through the point (p,q,0). Find p + q.

(a)	9	(b)	10		
(c)	11	(d)	12	(e)	NOTA

(17)

A less popular definition of eccentricity relates directly to the geometric origin of the phrase "conic section." It turns out that if β is the angle of the slant generator of the double-napped cone with horizontal and α is the angle the plane forming the conic makes with horizontal, then the eccentricity $e = \frac{\sin(\alpha)}{\sin(\beta)}$. See picture, left. If the slant generator of a certain double-napped cone makes a 45° angle with the horizontal, what is the eccentricity of the conic formed when the plane $\sqrt{7}x + y + \sqrt{17}z + 7 = 0$ cuts this cone?

(a)
$$\frac{4}{5}$$
 (b) $\frac{\sqrt{17}}{5}$
(c) $\frac{2\sqrt{2}}{5}$ (d) $\frac{\sqrt{34}}{5}$ (e) NOTA

(18) Which of the following equations represents an asymptote of the hyperbola $\frac{x^2}{9} - \frac{(y-1)^2}{4} = 1$?

(a)
$$r = \frac{1}{2\cos(\theta) - 3\sin(\theta)}$$
 (b) $r = \frac{3}{2\cos(\theta) + 3\sin(\theta)}$

(c)
$$r = \frac{1}{2\cos(\theta) + 3\sin(\theta)}$$
 (d) $r = \frac{3}{2\cos(\theta) - 3\sin(\theta)}$ (e) NOTA

- (19) An ellipse with eccentricity $e = \frac{2}{3}$ has a focus at the origin and a corresponding directrix (the one closer to that focus) with the equation y = -2x + 3. Which of the following could be the vertex of the ellipse lying between this focus and directrix?
 - (a) $\left(\frac{4}{5}, \frac{2}{5}\right)$ (b) $\left(\frac{2}{5}, \frac{4}{5}\right)$ (c) $\left(\frac{6}{25}, \frac{3}{25}\right)$ (d) $\left(\frac{12}{25}, \frac{6}{25}\right)$ (e) NOTA

(20)	Find the volume of the parallelepiped with edges corresponding to the vectors $(1,1,2)$, $(0,2,1)$, and $(3,1,0)$.						
	(a)	2		(b)	11		
	(c)	10		(d)	5	(e)	ΝΟΤΑ
(21)	Find t	the area bounde	d by the	conic re	presented by th	ie param	netric equations
()		$= 5 \sin(2t) - 2$				·	
	(a)	Ø	(b)	6π			
	(c)	70π	(d)	35π	(e)	NOTA	A
(22)	Find t	the equation of t	he slant	asympto	ote of $y = \frac{3x^2 + y}{x+y}$	$\frac{5x-2}{1}$.	
	(a)	y = 5x - 2		(b)	y = 3x + 2		
	(c)	y = 5x - 4		(d)	y = 3x + 5		(e) NOTA
(23)	What	is the period of	the grap	oh of $y =$	$= \sin(5x) + \sin(5x)$	(3x)?	
	(a)	2π	(b)	$\frac{2\pi}{3}$			
	(c)	$\frac{\pi}{2}$	(d)	$\frac{2\pi}{5}$	(e)	NOTA	Ą
(24)	What	is the amplitude	e of the g	graph of	$y = \sqrt{3}\sin(3x)$	$) + \sqrt{13}$	$\cos(3x)$?
	(a)	$\sqrt{3}$	(b)	4			
	(c)	$\sqrt{13}$	(d)	$\sqrt{10}$	(e)	NOTA	A
(25)	Find t	the distance from	n the po	int (3, –	1,2) to the plan	e 4 <i>x</i> – <i>y</i>	y + 3z + 2 = 0.
	(a)	$\frac{21\sqrt{26}}{26}$	(b)	21			
	(c)	$\sqrt{26}$	(d)	$\frac{26\sqrt{21}}{21}$	(e)	ΝΟΤΑ	A

(26) How many vertical and horizontal asymptotes does the graph of the function $f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ have?

(a)	1	(b)	2			
(c)	3	(d)	4	(e)	NOTA	

(27) Find the area inside the curve defined by the polar equation $r = 2\cos(\theta)$.

(a)	4π	(b)	π		
(c)	$\frac{\pi}{2}$	(d)	$\frac{\pi}{4}$	(e)	NOTA

(28) A triangle in the Cartesian plane has vertices (0,0), (0,k), and (h,0), where h, k > 0. What is the area of the largest rectangle that can be inscribed in this triangle?

(a)	$\frac{hk}{8}$	(b)	$\frac{hk}{2}$		
(c)	$\frac{hk}{3}$	(d)	$\frac{hk}{4}$	(e)	ΝΟΤΑ

(29) I have a curve that is the locus all points that are exactly $\frac{1}{2}$ as far away from the point (0,2) as they are from the x-axis. This coincides with the locus of points for which the sum of the distances to (0,2) and a point Q is constant. Find Q.

- (a) (0,4) (b) $\left(0,\frac{8}{3}\right)$
- (c) $\left(0, \frac{10}{3}\right)$ (d) $\left(0, \frac{4}{3}\right)$ (e) NOTA
- (30) The 2015 complex roots of the equation $x^{2015} 4 = 0$ are plotted in the complex plane. Which of the following is closest to the area enclosed by the convex polygon that has these points as vertices?
 - (a) 0 (b) *e*
 - (c) π (d) 2π (e) NOTA