Answers:

Solutions:

1.
$$
(2i)^{10} - (-2i)^9 = 2^{10}(-1) - (-2)^9i = -1024 + 512i
$$

2.
$$
a = 2\operatorname{cis}(60^{\circ}), b = \operatorname{cis}(-15^{\circ}) \Rightarrow \frac{a}{b} = 2\operatorname{cis}(75^{\circ})
$$

3. By observation of the first few terms of the sequence, each of the even terms ($n \ge 4$) becomes *i* while each of the odd terms becomes $-1 + i$. Thus, $|a_{2016}| = |i| = 1$.

4.
$$
x^2 + 1 = (2 \cos \theta)x \Rightarrow x^2 - (2 \cos \theta)x + 1 = 0
$$
. By the quadratic formula, we have $x = \frac{2 \cos \theta \pm \sqrt{4(\cos \theta)^2 - 4}}{2} = \cos \theta \pm \sqrt{-(\sin \theta)^2} = \cos \theta \pm i \sin \theta$. Also,
\n $\frac{1}{x} = \bar{x} = \cos(-\theta) \pm i \sin(-\theta) = \cos \theta \mp i \sin \theta$. So by DeMoivre's formula,
\n $x^m + \frac{1}{x^m} = (\cos(m\theta) \pm i \sin(m\theta)) + (\cos(m\theta) \mp i \sin(m\theta)) = 2 \cos(m\theta)$.

5. A and B are endpoints of a diameter of the circle $|z| = 2$, so any C with magnitude = 2 would suffice. In this case, $-1.2 - 1.6i$ works.

6.
$$
7 + (-12) - (7 + 12i) + (\sqrt{7^2 + 12^2})^2 = 181 - 12i.
$$

7. The sum of all the roots must be 0 since the coefficient on x^{2015} is 0. The sum of the real roots is also 0 since 1 and −1 are the only real solutions to the equation. Thus, the answer is 0.

8.
$$
i(\cos{\frac{\pi}{6}} + i \sin{\frac{\pi}{6}}) = i(\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2}) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i.
$$

9. By the binomial theorem, $\binom{11}{10}y^1(1+i)^{10}=\frac{11!}{10!1}$ $\frac{11!}{10!1!}$ (2*i*)⁵*y* = (11 ⋅ 32*i*)*y* \Rightarrow 352*i*.

10. Let
$$
z' = x + yi
$$
 so $az' = z$. Then,
\n $z \cdot \bar{z} = az'a\bar{z'} = a^2(z'\bar{z'}) = a^2|z'|^2 = a^2(x^2 + y^2) = a^2h^2$.

$$
11. \left| \sqrt{\frac{-1}{10}} - i \right| = \left| \frac{\sqrt{10}}{10} i - i \right| = \left| \frac{\sqrt{10} - 10}{10} i \right| = \sqrt{0^2 + \left(\frac{\sqrt{10} - 10}{10} \right)^2} = \left| \frac{\sqrt{10} - 10}{10} \right| = \frac{10 - \sqrt{10}}{10}.
$$

12. Using rules of summations and logarithms, we have:

$$
\sum_{n=0}^{101} \ln[(-e)^n] = \sum_{n=0}^{50} \ln[e^{2n}] + \sum_{n=0}^{50} \ln[(-e)^{2n+1}] = \sum_{n=0}^{50} (2n) + \sum_{n=0}^{50} \ln[-e^{2n+1}]
$$

= 50 × 51 + $\sum_{n=0}^{50} (\ln[e^{2n+1}] + \pi i) = 2550 + \sum_{n=0}^{50} (2n + 1 + \pi i)$
= 2550 + 51² + 51 πi = 5151 + 51 πi

13. Let $x = ae^{i\theta}$ and $y = be^{i\psi}$. Then substitution into our given equations yields: $a^2 e^{i2\theta} = b e^{i\psi} \Rightarrow a^2 = b$, $2\theta = \psi + 2\pi k$, $k \in \mathbb{Z}$. Likewise, $b^2 e^{i2\psi} = a e^{i\theta} \Rightarrow b^2 = a$, $2\psi = \theta + 2\pi j$, $j \in \mathbb{Z}$. Together with the knowledge that $x \neq y$, these facts tell us that $a = b = 1$ and $\theta = \frac{2\pi}{3}$ $\frac{2\pi}{3}, \psi = \frac{4\pi}{3}$ $\frac{1}{3}$ since $2\left(\frac{2\pi}{3}\right)$ $\frac{2\pi}{3}$ = $\frac{4\pi}{3}$ $\frac{m}{3}$ and $2\left(\frac{4\pi}{2}\right)$ $\left(\frac{4\pi}{3}\right) = \frac{8\pi}{3}$ $\frac{3\pi}{3} = \frac{2\pi}{3}$ $\frac{2\pi}{3}$ + 2 π (1). Thus, $x = e^{i\frac{2\pi}{3}} = -\frac{1}{2}$ $\frac{1}{2} + \frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}i$ and $y=e^{i\frac{4\pi}{3}}=-\frac{1}{2}$ $\frac{1}{2}-\frac{\sqrt{3}}{2}$ $\frac{1}{2}i$. So $x + y = -1$.

14. det $\begin{bmatrix} 316 - 122i \\ 1216 - 122i \end{bmatrix}$ $\begin{bmatrix} 316 - 122i \\ 216 + 122i \end{bmatrix}$ $|316 - 122i|$ $|316 - 122i|$
 $|316 - 122i|$ $|316 + 122i|$ $|316 - 122i|$ $|5$ $\begin{vmatrix} 2 & 2 \\ |z| & \bar{z} \end{vmatrix} = z\bar{z} - |z|^2 = 0$ since these two quantities are equal. Thus, the determinant of our original matrix is also 0.

15. Careful application of the rules of complex arithmetic yields:

$$
(-1 - i^{-1})^{-1} \cdot i^{-1} = \left(-1 - \frac{1}{i}\right)^{-1} \cdot \frac{1}{i} = (-1 + i)^{-1} \cdot (-i) = \frac{-i}{-1 + i} = \frac{-i(-1 - i)}{(-1 + i)(-1 - i)} = -\frac{1}{2} + \frac{1}{2}i.
$$

16. We can simplify our given function to $f(z) = \frac{z^2}{1-z^2}$ $\frac{z^2}{|z|^2} = \frac{z \cdot z}{z \cdot \overline{z}}$ $rac{z \cdot z}{z \cdot \bar{z}} = \frac{z}{\bar{z}}$ $\frac{2}{\bar{z}}$ so that we can simply plug in 121 – 144*i* to yield the answer $\frac{121-144i}{121+144i}$.

17. The first region, $|z| \leq \frac{5\sqrt{\pi}}{2}$ $\frac{\sqrt{\pi}}{\pi}$ is a circle centered at the origin of radius $\frac{5\sqrt{\pi}}{\pi}$. The second region is a square with corners at $1 + i$, $1 - i$, $-1 - i$, and $-1 + i$, so it has side length 2 and is contained completely within the circle since the magnitudes of the corners (which are furthest away from the origin) are all $\sqrt{2} < \frac{5\sqrt{\pi}}{\pi}$ $\frac{\sqrt{\pi}}{\pi}$. If this is not immediately obvious, consider $\sqrt{2} < \frac{5}{\sqrt{\pi}} \Leftrightarrow$ $\sqrt{2\pi}$ < 5 \Leftrightarrow $\sqrt{6.28\cdots}$ < $\sqrt{6.76}$ = 2.6 < 5. So the probability of a dart hitting in the square given that it hits in the circle is simply the ratio of their areas, respectively, i.e.

$$
P(\text{square}|circle) = \frac{A_{\text{square}}}{A_{\text{circle}}} = \frac{2^2}{\pi \left(\frac{5\sqrt{\pi}}{\pi}\right)^2} = \frac{4}{25} = \frac{16}{100} = 16\%.
$$

18. Let $z = i + \frac{1}{1+i}$ $\overline{i+\frac{1}{i}}$ i+… . Then we can observe: $z = i + \frac{1}{z}$ $\frac{1}{z}$ \Rightarrow $z^2 = iz + 1$ \Rightarrow $z^2 - iz - 1 = 0$. By the quadratic formula, $z = \frac{i \pm \sqrt{(-i)^2 - 4(1)(-1)}}{2(1)}$ $\frac{i^{2}-4(1)(-1)}{2(1)} = \frac{i \pm \sqrt{3}}{2}$ $\frac{1}{2}\sqrt{3}}{1} = \frac{1}{2}$ $\frac{1}{2}(i \pm \sqrt{3})$. Then, we can use the binomial theorem (or the rows of Pascal's triangle for coefficients) to obtain our answer by cubing z and observing that the value remains the same regardless of the \pm , i.e.

$$
z^{3}
$$
\n
$$
= \begin{cases}\n\frac{1}{8}(i + \sqrt{3})^{3} = \frac{1}{8}(i^{3} + 3(\sqrt{3})(i^{2}) + 3(\sqrt{3})^{2}(i) + (\sqrt{3})^{3}) = \frac{1}{8}(-i - 3\sqrt{3} + 9i + 3\sqrt{3}) \\
\frac{1}{8}(i - \sqrt{3})^{3} = \frac{1}{8}(i^{3} + 3(-\sqrt{3})(i^{2}) + 3(-\sqrt{3})^{2}(i) + (-\sqrt{3})^{3}) = \frac{1}{8}(-i + 3\sqrt{3} + 9i - 3\sqrt{3}) \\
\frac{1}{8}(8i) = i \\
\frac{1}{8}(8i) = i\n\end{cases}
$$

Thus the answer is i .

19. Draw a picture to see the solution. "All numbers with magnitude less than or equal to 2π " lie in a circle of radius 2π about the origin. "...having imaginary part 3" means each number will be of the form $x + 3i$ where x is a real number. Plotting this gives a horizontal line whose tails are cut off by the edge of the circle. Thus, the answer is a horizontal line segment.

20. We can see
$$
0 = Q(\overline{z_1}) = P(\overline{z_1}) - (3 - 4i) \Leftrightarrow 3 - 4i = P(\overline{z_1}) - Q(\overline{z_1})
$$
. And so $P(\overline{z_1}) = 3 - 4i$. Thus, $P(z_1)P(\overline{z_1}) = (3 - 4i)^2 = 9 - 12i - 12i - 16 = -7 - 24i$.

21. Putting our numbers in complex polar form, we have $z = \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}e^{i(\frac{-\pi}{4})}$ $\frac{4}{4}$ and $w = \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}e^{i\left(\frac{5\pi}{4}\right)}$ $\frac{3n}{4}$). Then, $z^k + w^k = 0 \Leftrightarrow \left(\frac{\sqrt{2}}{2}\right)$ $\frac{2}{2}$ \boldsymbol{k} $\left[e^{i\left(\frac{-\pi}{4}\right)}\right]$ $(\frac{2\pi}{4})(k) + e^{i(\frac{5\pi}{4})}$ $\left[\frac{(\delta \pi)^{1}}{4}(k)\right] = 0 \Rightarrow e^{i\left(\frac{-\pi}{4}\right)}$ $(\frac{1}{4})^{(k)} = -e^{i(\frac{5\pi}{4})}$ $\frac{4}{4}$ ^(k). This will occur when $\cos\left(\frac{-\pi k}{4}\right)$ $\left(\frac{\pi k}{4}\right) + i \sin \left(\frac{-\pi k}{4}\right)$ $\left(\frac{\pi k}{4}\right) = -\cos\left(\frac{5\pi k}{4}\right)$ $\left(\frac{\pi k}{4}\right) - i \sin \left(\frac{5\pi k}{4}\right)$ $\frac{4\pi}{4}$). Using the fact that cosine is an even periodic function and sine is an odd periodic function (with periods 2π), and equating the real parts of each side of the equation (as well as the imaginary parts), we can see that the equation will hold whenever $\frac{-\pi k}{4} = \left(\frac{5\pi k}{4}\right)$ $\frac{4\pi}{4} + \pi$ + $2\pi n$ for any integer n. Solving for k yields $k = -\frac{2}{3}$ $\frac{2}{3} - \frac{4}{3}$ $\frac{4}{3}n$. So $K = \left\{\pm \frac{2}{3}\right\}$ $\frac{2}{3}$, ± 2 , $\pm \frac{10}{3}$ $\left[\frac{10}{3}, \cdots \right]$, which means $|K| = \left\{\frac{2}{3}\right\}$ $\frac{2}{3}$, 2, $\frac{10}{3}$ $\frac{10}{3}$, \cdots }, and $\min|K| = \frac{2}{3}$ $\frac{2}{3}$.

4

22. Performing the complex arithmetic in cis-form, we have:

$$
\prod_{n=1}^{360} 2^{n(-1)^n} (\cos(n^{\circ}) + i \sin(n^{\circ})) = 2^{-1} \text{cis}(1^{\circ}) \cdot 2^2 \text{cis}(2^{\circ}) \cdots 2^{-359} \text{cis}(359^{\circ}) \cdot 2^{360} \text{cis}(360^{\circ})
$$

= $2^{(-1+2)+(-3+4)+\cdots+(-359+360)} \text{cis}(1^{\circ} + 2^{\circ} + \cdots 360^{\circ}) = 2^{180} \text{cis}\left(\frac{360(361)}{2}^{\circ}\right)$
= $2^{180} \text{cis}(180^{\circ} \cdot 361) = 2^{180} \text{cis}(180^{\circ}) = -2^{180}$

23. $i^i = (e^{i\frac{\pi}{2}})$ i $=e^{-\frac{\pi}{2}}$ which is a real number, so D is false while the others are true statements.

24. Equate the real parts and imaginary parts of each equation to obtain two 2x2 systems of equations, i.e.

$$
\begin{cases}\n2\text{Re}(x) - \text{Im}(x) + 3\text{Re}(y) + 2\text{Im}(y) = 21 \\
-4\text{Re}(x) + 2\text{Im}(x) + 2\text{Re}(y) - 6\text{Im}(y) = 4 \\
\text{Re}(x) + 2\text{Im}(x) - 2\text{Re}(y) + 3\text{Im}(y) = -6 \\
-2\text{Re}(x) - 4\text{Im}(x) + 6\text{Re}(y) + 2\text{Im}(y) = 32 \\
\text{Re}(x) = 1, \text{Re}(y) = 6, \text{Im}(x) = 1, \text{Im}(y) = 1\n\end{cases}
$$
\nSo $x = 1 + i$ and $y = 6 + i$, thus $|x + y| = |7 + 2i| = \sqrt{49 + 4} = \sqrt{53}$.

25. Recognizing the cosine/sine values for 15° angles, we have:

$$
\left[\frac{\sqrt{6} + \sqrt{2}}{4} + i\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)\right]^{40} = (\cos(15^\circ) + i\sin(15^\circ))^{40} = (1)^{40}\text{cis}(40 \cdot 15^\circ) = \text{cis}(600^\circ)
$$

$$
= \text{cis}(240^\circ)
$$

which lies in quadrant III .

26. Every four terms cancel, which leaves the final term, which is $i^{2016} = 1$.

27. Using the cyclic nature of powers of *i* and grouping together like terms, we have:
\n
$$
\sum_{n=1}^{102} ni^n = i + 2i^2 + 3i^3 + 4i^4 + \dots + 102i^{102}
$$
\n
$$
= (1 + 5 + 9 + \dots + 101)i + (2 + 6 + 10 + \dots + 102)i^2 + (3 + 7 + 11 + \dots + 99)i^3 + (4 + 8 + 12 + \dots + 100)i^4
$$
\n
$$
= \frac{26(1 + 101)}{2}i + \frac{26(2 + 102)}{2}(-1) + \frac{25(3 + 99)}{2}(-i) + \frac{25(4 + 100)}{2}(1)
$$
\n
$$
= 1326i - 1352 - 1275i + 1300 = -52 + 51i
$$

28. Let $z = x + yi$. Then, $(1 + i)z = (1 + i)(x + yi) = (x - y) + (x + y)i$. This quantity is only a real number when the imaginary part is 0, i.e. $x + y = 0 \Leftrightarrow y = -x$ which is a line.

29.
$$
e^{i\frac{\pi}{2}}\mathbb{Q}e^{i\pi} = i\mathbb{Q}(-1) = i^{-1} - (-1)^i = -i - (e^{i\pi})^i = -i - e^{-\pi} = -\frac{1}{e^{\pi}} - i
$$
. (E. NOTA)

30. We can think of the faces analogously as the θ 's of the roots of unity in their polar form: 1 \cdot $e^{i\theta}$, i.e. $\left\{0,\frac{\pi}{2}\right\}$ $\frac{\pi}{3}, \frac{2\pi}{3}$ $\frac{2\pi}{3}$, π , $\frac{4\pi}{3}$ $\frac{1\pi}{3}, \frac{5\pi}{3}$ $\frac{3\pi}{3}$. For the product of the two roots Jim rolled to be wholly in the third quadrant, the sum of their angles must be $\frac{4\pi}{3}+2\pi k$ for some integer k . For each value he rolls on the first roll, exactly one other roll will give him the desired result as we can see:

So there are 6 ways he can have a product in the third quadrant out of a total of 36 possible roll combinations. Thus, $P(QIII) = \frac{6}{3}$ $\frac{6}{36} = \frac{1}{6}$ $\frac{1}{6}$.