"For all questions, answer choice "E. NOTA" means none of the above answers is correct."

1. What is the minimum number of roots a polynomial, f(x), must have if the graph of y=f(x) contains the following points: (-4, 7), (-3, 5), (-2, 6), (-1, -4), (0, -2), (1, -3), and (2, 1)?

A. 0 B. 2 C. 5 D. 6 E. NOTA

2. The sum of the integers 1 through n inclusive can be modeled by a polynomial. What is the sum of the coefficients of that polynomial?

A. 0 B. ½ C. 1 D. 2 E. NOTA

3. How many times does the polar graph of $r(\theta) = \theta^2 - 7\theta + 1$ pass through the pole?

A. 0 B. 1 C. 2 D. 3 E. NOTA

4. What is the sum of the x-intercepts of $g(t) = e^{2t} + e^{t+ln5} - 14$

- A. ln2 B. $\ln(\frac{2}{7})$ C. ln7 D. ln14 E. NOTA
- 5. Which of the following functions has y = x+2 as a slant asymptote?
- A. $y = \frac{x^3 + 4x^2 + 6}{x^3 + 2x^2 + 3}$ B. $y = \frac{x^3}{x^2 2x}$ C. $y = \frac{4x^2 + 6}{2x^3 + 3}$ D. All of the above E. NOTA

6. The function $f(x) = \frac{ax^2+x-7}{9x^2+bx+4}$ has a horizontal asymptote at y=c, exactly one vertical asymptote, and no removable discontinuities (holes). What is $\frac{a}{bc}$?

A. $\frac{1}{16}$ B. $\frac{3}{4}$ C. $\frac{4}{3}$ D. $\frac{3}{2}$ E. NOTA

7. What is the y-coordinate of the hole in the graph of $f(x) = \frac{x-5}{x^2-25}$?

A. 0 B. $\frac{1}{5}$ C. 1 D. 5 E. NOTA

8. If $f(x) = x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32$, what is $f^{-1}(-32)$?

A. -4 B. -2 C. 0 D. 2 E. NOTA

9. On what interval(s) is f(x) > 1, if $f(x) = \frac{x-7}{x^2+3}$?

A.
$$(7, \infty)$$
 B. $(-\infty, 7)$ C. $\left(\frac{1-\sqrt{17}}{2}, \frac{1+\sqrt{17}}{2}\right)$ D. $\left(-\infty, \frac{1-\sqrt{17}}{2}\right) \cup \left(\frac{1+\sqrt{17}}{2}, \infty\right)$ E. NOTA

10. If the roots of $y = 3x^4 - 8x^3 + 9x - 17$ are a, b, c, and d, find a + b + c + d.

A. -3 B. $-\frac{8}{3}$ C. $\frac{8}{3}$ D. 8 E. NOTA

11. When $f(x) = x^7 - 4x^6 - 6x^5 + 7x^4 + x^3 - x - 5$, Descartes' Rule of Signs guarantees that the maximum number of positive zeroes is a, and b is the maximum number of negative zeroes. What is a-b?

A. -3 B. -1 C. 1 D. 3 E. NOTA

12. If $f(x) = (-3x + 2)(x - 5)^2(x - 11)$ on what interval(s) is f(x) strictly positive?

A. $\left(-\infty, \frac{2}{3}\right) U(11, \infty)$ B. $\left(\frac{2}{3}, 5\right)$ C. (5, 11) D. $\left(\frac{2}{3}, 11\right)$ E. NOTA

13. What is the remainder when $x^4 + 3x^3 - 4x^2 + 5x - 6$ is divided by x - 1?

14. The function $f(x) = \frac{ax^2+4x+c}{3x^2+5x-7}$ has a horizontal asymptote of y = 3 and a zero at x = 1. Find *ac*.

A. -117 B. -21 C. -5 D. -4 E. NOTA

15. For what value(s) of θ does the polar function $r(\theta) = \theta^3 - \pi \theta^2 - \frac{\pi^2}{4}\theta + \frac{\pi^3}{4}$ pass through the pole?

A. $-\pi$ B. $-\frac{\pi}{2}$ & $\frac{\pi}{2}$ C. π D. $-\frac{\pi}{2}$, $\frac{\pi}{2}$, & π E. NOTA

16. If $\cos^2(\theta) + \frac{64}{65}\cos(\theta) + \frac{3}{13} = 0$, what is the sum of all possible values of $\csc(\theta)$ if $0 \le \theta \le \pi$?

A. -7 B. -2 C. 2 D. 7 E. NOTA

17. How many asymptotes (of any kind) are on the graph of $(x) = \frac{x-2}{x^3-7x}$? A. 0 B. 1 C. 2 D. 3 E. NOTA 18. How many zeroes does the function $f(x) = \cos\left(\frac{1}{x}\right)$ have on the open interval (0,1)? A. 0 B. 1 C. 2 D. infinitely many E. NOTA 19. What is the largest x value for which $f(x) = \cos\left(\frac{1}{x}\right)$ has a zero? B. $\frac{2}{\pi}$ C. $\frac{5}{2\pi}$ D. $\frac{\pi}{2}$ A. $\frac{1}{\pi}$ E. NOTA 20. What happens to the distance between consecutive zeroes of $f(x) = \sin(x^2)$ as x increases over the interval (-100, -50)? A. it always decreases C. it always increases B. it remains constant D. it decreases then increases E. NOTA 21. What is the sum of the coefficients of the expansion of $(x - 5)^9$? B. -2^{9} A. -5^{9} C. 0 D. 2⁹ E. NOTA 22. f(x) and g(x) are both polynomial functions such that f(g(x)) = g(f(x)) = x. If a is the

degree of f(x) and b is the degree g(x) what is a + b?

A. 0 B. 1 C. 2 D. 3 E. NOTA

23. f(x) and g(x) are both polynomial functions of degree greater than 2 such that the degree of g is one more than the degree of f. If the leading coefficient of f is positive and odd and the leading coefficient of g is negative and odd, what is the end behavior of g(f(-x))?

A. As $x \to \infty, y \to \infty$ and as $x \to -\infty, y \to \infty$ B. As $x \to \infty, y \to -\infty$ and as $x \to -\infty, y \to -\infty$ C. As $x \to \infty, y \to \infty$ and as $x \to -\infty, y \to -\infty$ D. Not enough information E. NOTA 24. f(x) and g(x) are both polynomial functions of degree greater than 2 such that they both have a leading coefficient of 1 and the degree of f is n and the degree of g is 2n. The function $h(x) = \frac{g(x)}{f(f(x))}$ approaches an asymptote as $x \to \infty$. What is this asymptote and from which side does it approach?

A. y = 0 from the bottomB. y = 0 from the topC. y = 1 from the bottomD. y = 1 from the topE. NOTA

25. Let s be the sum of the terms in the 28th row of Pascal's triangle. Find $\sqrt[3]{s}$. The 1st row of Pascal's triangle consists of a single 1, obviously.

A. 512 B. $512\sqrt[3]{2}$ C. 1024 D. $1024\sqrt[3]{4}$ E. NOTA

26. Which of the following represents the function $f(x) = x^2$ with holes at 2 and -2?

A.
$$g(x) = \frac{x^4 - 4x^2}{x^2}$$
 B. $g(x) = \frac{x^2(x-2)^2}{x^2}$ C. $g(x) = \frac{x^2}{x^2(x-2)^2}$
D. $g(x) = \frac{x^2}{x^4 - 4x^2}$ E. NOTA
27.Find $\sum_{n=0}^{\infty} \frac{n^2 - 3n + 3}{2^n}$
A. 1 B. $\frac{3}{2}$ C. 3 D. 6 E. NOTA
28. The function $g(x) = \frac{1}{f(x)}$ has three vertical asymptotes at $x = a, b, and c. f(x)$ is a cubic polynomial with leading coefficient 1. What is the y-coordinate of the y-intercept of $g(x)$?
A. abc B. $\frac{1}{abc}$ C. $a + b + c$ D. $\frac{1}{a+b+c}$ E. NOTA
29. According to the Rational Zeroes Theorem, how many *possible* rational zeroes are there for $f(x) = 4x^7 + 2x^6 - 9x^4 + x^3 - 72$?
A. 7 B. 18 C. 36 D. 72 E. NOTA
30. Find the sum of all distinct solutions for x in the following equation: $\frac{x^2 + 3x + 2}{x^2 + 2x + 1} = \frac{x+2}{x^2 + 4x + 3}$
A. -4 B. -2 C. 2 D. 4 E. NOTA