#0 Alpha Bowl MA© National Convention 2016

Let **A** = the number of integers that satisfy the in equality: $-2 < 4 - 3x \le 7$ or 17 > 5x + 12 > 7

Let **B** = the value of "n" so that the line through the points (0, 4) and (n-2, 6) has X-intercept "n".

Let **C** =
$$\frac{x^3 - y^3}{x^4 + x^2y^2 + y^4} \bullet \frac{x^3 + y^3}{x^2 - y^2}$$

Let **D** = the sum of the solutions to the equation: $\frac{x-2}{x^2-1} - \frac{3}{x^2+4x+3} = \frac{2x-1}{x^2+2x-3}$

ABCD =?

#0 Alpha Bowl MA© National Convention 2016

Let **A** = the number of integers that satisfy the in equality: $-2 < 4 - 3x \le 7$ or 17 > 5x + 12 > 7

Let **B** = the value of "n" so that the line through the points (0, 4) and (n-2, 6) has X-intercept "n".

Let **C** =
$$\frac{x^3 - y^3}{x^4 + x^2y^2 + y^4} \bullet \frac{x^3 + y^3}{x^2 - y^2}$$

Let **D** = the sum of the solutions to the equation: $\frac{x-2}{x^2-1} - \frac{3}{x^2+4x+3} = \frac{2x-1}{x^2+2x-3}$

ABCD =?

#1 Alpha Bowl MA© National Convention 2016

 $r = 3\csc\theta - 5r\csc\theta$ can be expressed in rectangular form: $Ax^2 + By^2 + Cx + Dy - E = 0$, where A, B, C, D, and E are non-negative integers

 $r = \frac{2}{6 - \sin \theta}$ can be expressed in rectangular form: $Fx^2 + Gy^2 + Hx - Iy - J = 0$, where F, G, H, I, and J are non-negative integers

If A, B, C, D, and E are relatively prime, and if F, G, H, I, and J are relatively prime, what is the value of **A+B+C+D+E+F+G+H+I+J=**?

#1 Alpha Bowl MA© National Convention 2016

 $r = 3\csc\theta - 5r\csc\theta$ can be expressed in rectangular form: $Ax^2 + By^2 + Cx + Dy - E = 0$, where A, B, C, D, and E are non-negative integers

 $r = \frac{2}{6 - \sin \theta}$ can be expressed in rectangular form: $Fx^2 + Gy^2 + Hx - Iy - J = 0$, where F, G, H, I, and J are non-negative integers

If A, B, C, D, and E are relatively prime, and if F, G, H, I, and J are relatively prime, what is the value of **A+B+C+D+E+F+G+H+I+J=?**

#2 Alpha Bowl MA© National Convention 2016

A sphere is inscribed in a cube that has surface area of 24 square units. A second cube is then inscribed within the sphere. Let **A** = the surface area in square units of the inner cube

A pyramid with a square base is cut by a plane that is parallel to its base and is 2 units from the base. The surface area of the smaller pyramid that is cut from the top is half the surface area of the original pyramid. Let **B** = the altitude of the original pyramid.

A+B =?

#2 Alpha Bowl MA© National Convention 2016

A sphere is inscribed in a cube that has surface area of 24 square units. A second cube is then inscribed within the sphere. Let **A** = the surface area in square units of the inner cube

A pyramid with a square base is cut by a plane that is parallel to its base and is 2 units from the base. The surface area of the smaller pyramid that is cut from the top is half the surface area of the original pyramid. Let **B** = the altitude of the original pyramid.

#3 Alpha Bowl MA© National Convention 2016

Two-thirds of the adults in the U.S. are high school graduates. If you randomly selected 4 adults, let **A** = the probability at least three of them were high school graduates.

The Buchholz Math Team is looking to find 8 elite mathletes to fill out their team. They believe that only 12.5% of all mathletes have the required characteristics to make the team. Let **B** = the average number of mathletes that should be invited to tryout before they fulfill their target of 8 that have the required characteristics.

 $\frac{A}{B}$ = ?

#3 Alpha Bowl MA© National Convention 2016

Two-thirds of the adults in the U.S. are high school graduates. If you randomly selected 4 adults, let **A** = the probability at least three of them were high school graduates.

The Buchholz Math Team is looking to find 8 elite mathletes to fill out their team. They believe that only 12.5% of all mathletes have the required characteristics to make the team. Let **B** = the average number of mathletes that should be invited to tryout before they fulfill their target of 8 that have the required characteristics.

 $\frac{A}{B}$ = ?

#4 Alpha Bowl MA© National Convention 2016

Given $y^2 - 12x - 48 = 0$: Let **A=** the area enclosed by the triangle formed by connecting the endpoints of the latus rectum to the vertex

Given $4x^2 + y^2 - 8x + 6y + 9 = 0$: Let **B**= the area of the rectangle formed by connecting the endpoints of the latus recti.

A + B =?

#4 Alpha Bowl MA© National Convention 2016

Given $y^2 - 12x - 48 = 0$: Let **A=** the area enclosed by the triangle formed by connecting the endpoints of the latus rectum to the vertex

Given $4x^2 + y^2 - 8x + 6y + 9 = 0$: Let **B**= the area of the rectangle formed by connecting the endpoints of the latus recti.

A + B =?

Let
$$\mathbf{A} = \lim_{x \to 0} \frac{2 - \sqrt{4 - x}}{x}$$

Let $\mathbf{B} = \lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x \right)$
Let $\mathbf{C} = \lim_{x \to 0} \frac{4^x - 4^{-x}}{4^x + 4^{-x}}$
Let $\mathbf{D} = \lim_{x \to 0} \frac{\frac{1}{x + 6} - \frac{1}{6}}{x}$

A+B+C+D=?

#5 Alpha Bowl MA© National Convention 2016

Let
$$\mathbf{A} = \lim_{x \to 0} \frac{2 - \sqrt{4} - x}{x}$$

Let $\mathbf{B} = \lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x \right)$
Let $\mathbf{C} = \lim_{x \to 0} \frac{4^x - 4^{-x}}{4^x + 4^{-x}}$
Let $\mathbf{D} = \lim_{x \to 0} \frac{\frac{1}{x + 6} - \frac{1}{6}}{x}$

-

A+B+C+D=?

#6 Alpha Bowl MA© National Convention 2016

To raise money to go to nationals the King math team sells 140 raffle tickets for a total of \$2001. They sell some tickets for full price (some whole dollar amount), and the rest for half price. Let **A** = the number of dollars that are raised by the full-price tickets.

Mr. Lu leaves his mansion for Buchholz every morning at 10:00 A.M. (he likes to sleep in). When he averages 40 mph, he arrives at Buchholz 3 minutes late. When he averages 60 mph, he arrives 3 minutes early. Let **B** = the number of mph Mr. Lu should average to arrive at Buchholz on time.

A + B =?

#6 Alpha Bowl MA© National Convention 2016

To raise money to go to nationals the King math team sells 140 raffle tickets for a total of \$2001. They sell some tickets for full price (some whole dollar amount), and the rest for half price. Let **A** = the number of dollars that are raised by the full-price tickets.

Mr. Lu leaves his mansion for Buchholz every morning at 10:00 A.M. (he likes to sleep in). When he averages 40 mph, he arrives at Buchholz 3 minutes late. When he averages 60 mph, he arrives 3 minutes early. Let **B** = the number of mph Mr. Lu should average to arrive at Buchholz on time.

A + B =?

Let **A** = cos2x, if tanx =
$$\frac{-4}{3}$$
 and 90° < x < 180°
Let **B** = sin2x, if sinx = $\frac{5}{13}$ and 90° < x < 180°
Let **C** = cos2x, if sinx = $\frac{3}{5}$ and 90° < x < 180°
Let **D** = tan2x, if cosx = $\frac{5}{13}$ and 270° < x < 360°
 $\frac{AB}{CD}$ = ?

#7 Alpha Bowl MA© National Convention 2016

Let A = cos2x, if tanx = $\frac{-4}{3}$ and 90° < x < 180°
Let B = sin2x, if sinx = $\frac{5}{13}$ and $90^{\circ} < x < 180^{\circ}$
Let C = cos2x, if sinx = $\frac{3}{5}$ and $90^{\circ} < x < 180^{\circ}$
Let D = tan2x, if cosx = $\frac{5}{13}$ and $270^{\circ} < x < 360^{\circ}$
$\frac{AB}{CD} = ?$

#8 Alpha Bowl MA© National Convention 2016

Both roots of the equation $x^2 - 63x + n = 0$ are prime numbers. Let **A** = the number of possible values of n.

Two different positive numbers differ from their reciprocals by 1. Let \mathbf{B} = the sum of these two positive numbers.

AB =?

#8 Alpha Bowl MA© National Convention 2016

Both roots of the equation $x^2 - 63x + n = 0$ are prime numbers. Let **A** = the number of possible values of n.

Two different positive numbers differ from their reciprocals by 1. Let \mathbf{B} = the sum of these two positive numbers.

#9 Alpha Bowl MA© National Convention 2016

Mu-Lu rolls two fair dice. One is an octahedral die numbered 1 through 8 and the other is a standard sixsided die. Let **A** = the probability that the product of the numbers showing on the dice is a multiple of 3.

Two numbers are selected at random from the interval [-20,10]. Let **B** = the probability that the product of those numbers is greater than zero.

A+B =?

#9 Alpha Bowl MA© National Convention 2016

Mu-Lu rolls two fair dice. One is an octahedral die numbered 1 through 8 and the other is a standard sixsided die. Let **A** = the probability that the product of the numbers showing on the dice is a multiple of 3.

Two numbers are selected at random from the interval [-20,10]. Let **B** = the probability that the product of those numbers is greater than zero.

#10 Alpha Bowl MA© National Convention 2016

If w, x, y, z are positive numbers such that w, x, y, z forms an increasing arithmetic sequence and w, x, z form a geometric sequence, let $\mathbf{A} = \frac{z}{w}$

The geometric series $a + ar + ar^2 + ...$ has a sum of 7, and the terms involving odd powers of r have a sum of 3. Let **B** = a + r

AB =?

#10 Alpha Bowl MA© National Convention 2016

If w, x, y, z are positive numbers such that w, x, y, z forms an increasing arithmetic sequence and w, x, z form a geometric sequence, let $\mathbf{A} = \frac{z}{w}$ The geometric series $a + ar + ar^2 + ...$ has a sum of 7, and the terms involving odd powers of r have a sum of 3. Let $\mathbf{B} = \mathbf{a} + \mathbf{r}$

#11 Alpha Bowl MA© National Convention 2016

For each equation below assume the domain is $(0, 2\pi]$

Let **A** = the sum of the solutions of: $\csc^2 x - 2\cot x = 0$

Let **B** = the sum of the solutions of: $\tan x + \sqrt{3} = \sec x$

Let **C** = the sum of the solutions of: $2\cos 2x + 2\sin^2 x = 1$

A + B + C = ?

#11 Alpha Bowl MA© National Convention 2016

For each equation below assume the domain is $(0, 2\pi]$ Let **A** = the sum of the solutions of: $\csc^2 x - 2 \cot x = 0$

Let **B** = the sum of the solutions of: $\tan x + \sqrt{3} = \sec x$

Let **C** = the sum of the solutions of: $2\cos 2x + 2\sin^2 x = 1$

A + B + C = ?

#12 Alpha Bowl MA© National Convention 2016

If $\log(a^2b) = 1$ and if $\log(ab^3) = 1$, let **A** = log(ab)

A circle has a radius of $\log x^2$ and a circumference of $\log y^4$, let **B** = the $\log_x y$

AB =?

#12 Alpha Bowl MA© National Convention 2016

If $\log(a^2b) = 1$ and if $\log(ab^3) = 1$, let **A** = log(ab)

A circle has a radius of $\log x^2$ and a circumference of $\log y^4$, let **B** = the $\log_x y$

#13 Alpha Bowl MA© National Convention 2016

The lateral area of a cone is three-fifths the total area. Let **A** = the ratio of the radius to the slant height.

A regular hexagonal pyramid with base edge 6 and height 8 is inscribed in a cone such that the bases of the pyramid and the cone are coplanar. Let \mathbf{B} = the lateral area of the cone.

AB =?

#13 Alpha Bowl MA© National Convention 2016

The lateral area of a cone is three-fifths the total area. Let **A** = the ratio of the radius to the slant height.

A regular hexagonal pyramid with base edge 6 and height 8 is inscribed in a cone such that the bases of the pyramid and the cone are coplanar. Let B = the lateral area of the cone.

$MA\Theta \text{ National Convention 2016}$ Let $\mathbf{A} = \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \dots \frac{1}{\sqrt{63} + \sqrt{64}}$.

Let **B** be the number such that the sum of the **B** least positive integers is 4950.

A – B =?

Let **B** be the number such that the sum of the **B** least positive integers is 4950.

A – B =?