For this test, E) NOTA means None Of The Above. All inverse trigonometric functions are restricted to their tradition domains. The imaginary constant *i* is defined to be

 $i = \sqrt{-1}$, and $\operatorname{cis}(\theta) = \cos(\theta) + i \sin(\theta)$. For this test, an infinite sum of 1's with alternating signs is taken to be undefined. Good Luck!

1) Determine the number of times on the interval $[0,2017\pi)$ that $\cos(3\theta) = 0$.

A) 6048 B) 6051 C) 2017 D) 12102 E) NOTA

2) Determine the amplitude of the function $y = 9\cos(x) + 44\sin(x)$.

A) 9 B) 44 C) $\sqrt{2017}$ D) 53 E) NOTA

3) The expression $-\sin\theta \tan\theta$ is a simplified version of which of the following expressions.

A) $\frac{\sin\theta - \tan\theta}{\csc\theta - \cot\theta}$ B) $\frac{\cos\theta - \sin\theta}{\cos(\sin(\theta))}$ C) $\frac{\sin\theta + \cos\theta}{\tan\theta}$ D) $\frac{\tan(\theta - \pi)}{\sin\theta - \cos\theta}$ E) NOTA

For questions 4-6 use the following information: Victoria is standing a few feet away from a lamppost. For this problem, she is 6' tall and looks up at the top of the lamppost

at an angle of α with the horizontal. She determines that $\tan \alpha = \frac{7}{9}$ and then walks toward the lamppost a few steps. When she stops, she is 7 feet away from the post and determines while looking up at the top of the post at angle β with the horizontal that

 $\tan\beta=\frac{9}{7}.$

4) How many feet did Victoria walk forward?

A) 7 B) 9 C) 9/7 D) 7/9 E) NOTA

5) How many feet taller is the lamppost than Victoria?

A) 7 B) 9 C) 9/7 D) 7/9 E) NOTA

6) If Victoria moves back to the position where she initially measured $\tan \alpha$, what is the tangent of the angle of inclination from the ground where she stands to the top of the flagpole?

A) 32/27 B) 35/27 C) 8/7 D) 5/4 E) NOTA

MAO National Competition Alpha Trigonometry

7) If
$$\theta > 0$$
 and $\cos \theta = \frac{1}{3}$, find $\cos 3\theta$.
A) 1/27 B) 1/3 C) -1 D) -23/27 E) NOTA

8) Jennifer wishes to model the vertical motion of a bucket attached to the outer edge of a vertical waterwheel. The wheel has diameter 2017 feet and is centered 1000 feet above the surface of the river it draws power from. If at time t = 0 seconds the bucket is at the apex of its path and the wheel makes 1 full counterclockwise rotation in 10 minutes, which of the following equations describes the vertical motion of the bucket, where *t* and *y* are in seconds and feet relative to the surface of the water, respectively?

A)
$$y = \frac{2017}{2} \cos\left(\frac{\pi}{300}t\right) + 1000$$
 B) $y = \frac{2017}{2} \sin\left(\frac{\pi}{600}t\right) - 1000$

C)
$$y = \frac{2017}{2} \cos\left(\frac{\pi}{150}t\right) - 1000$$
 D) $y = \frac{2017}{2} \sin\left(\frac{\pi}{300}t\right) + 1000$ E) NOTA

9) List all values of x is the function $f(x) = \sum_{k=0}^{\infty} \sin^{k}(x)$ undefined?

A)
$$\frac{\pi}{2}$$
 B) $\frac{3\pi}{2}$ C) $\frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$ D) $\frac{\pi + n}{2}$, $n \in \mathbb{Z}$ E) NOTA

10) Simplify
$$\frac{\csc t - \sec t}{\cos^2 t - \sin^2 t}$$

A)
$$\frac{4(\cos t - \sin t)}{\sin 4t}$$
 B) $\frac{\cos t - \sin t}{\sin t}$ C) $\frac{4(\sin t - \cos t)}{\sin 4t}$ D) $\frac{\cos 2t}{\sin 4t}$ E) NOTA

11) Given:
$$0 < x < \pi$$
 and $\frac{\pi}{2} < y < \frac{3\pi}{2}$. If $\cos x = -\frac{5}{13}$ and $\sin y = -\frac{8}{17}$, find $\tan(x - y)$.
A) 220/21 B) -220/21 C) 20/3 D) -20/3 E) NOTA

12) What is the straight line distance between the points
$$\left(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{4}\right)$$
 and $\left(\sqrt{3}, \frac{7\pi}{4}, \pi - \tan^{-1}\left(\sqrt{2}\right)\right)$? Coordinates are given in spherical coordinates.
A) 3 B) $\sqrt{11}$ C) $\sqrt{13}$ D) 4 E) NOTA

MAO National Competition Alpha Trigonometry

13)
$$\left[(2 \operatorname{cis} 3^{\circ}) (5 \operatorname{cis} 11^{\circ}) \right]^{3} =$$

A) 10 cis(14°) B) 1000 cis(2744°) C) 1000 cis(42°) D) $\sqrt[3]{10} \operatorname{cis}(\sqrt[3]{14}^{\circ})$ E)
NOTA
14) Evaluate $\cos\left(2 \operatorname{cot}^{-1}\left(\frac{15}{11}\right)\right)$.
A) $\frac{15}{\sqrt{346}}$ B) $\frac{225}{346}$ C) $\frac{11}{15}$ D) $\frac{52}{173}$ E) NOTA
15) Evaluate $\cos\left(\sin^{-1}\left(-\frac{3}{4}\right)\right)$
A) $\frac{4}{5}$ B) $\frac{\sqrt{7}}{4}$ C) $-\frac{4}{5}$ D) $-\frac{\sqrt{7}}{4}$ E) NOTA

16) Express the following as a complex number in cis(x) form:

$$e^{i\frac{\pi}{2}}e^{i\frac{\pi}{3}}e^{i\frac{\pi}{4}}e^{i\frac{\pi}{5}}e^{i\frac{\pi}{6}}$$
A) cis $\left(\frac{\pi}{20}\right)$ B) cis $\left(\frac{\pi^{5}}{720}\right)$ C) cis $\left(\frac{60\pi}{87}\right)$ D) cis $\left(\frac{87\pi}{60}\right)$ E) NOTA

17) Compute the tangent of the smaller angle between the planes x - y + 2z = 7 and -4x + 7y - z = 12.

A)
$$\frac{-\sqrt{227}}{13}$$
 B) $\frac{\sqrt{227}}{13}$ C) $\frac{-13\sqrt{11}}{6}$ D) $\frac{13\sqrt{11}}{6}$ E) NOTA

18) Let us say that for a given angle $0 < \theta < \frac{\pi}{2}$, call *A* the point where the terminal side of θ in standard position intersects the unit circle centered at the Origin *O*. The line segment that is tangent to the unit circle at A meets the *x*-axis at *E*. Which trigonometric function can be geometrically represented as the length of segment *OE*?

A) $\tan \theta$ B) $\sin \theta$ C) $\csc \theta$ D) $\sec \theta$ E) NOTA

19) A lesser known trig function is called the chord of theta, shortened to $crd(\theta)$. It is the length of the chord from the point A (as defined in problem 18) to either (1,0) or (-1,0), whichever is closer. It is always positive. Which of the following is $crd(\theta)$ equal to?

A)
$$r\theta$$
 B) $\frac{\sin\theta}{2}$ C) $2\cos\frac{\theta}{2}$ D) $2\sin\frac{\theta}{2}$ E) NOTA

For Questions 20 and 21: *ABCDEFGH* is given to be a regular octagon with side length 2.

20) Find the semi-perimeter of triangle ADG.

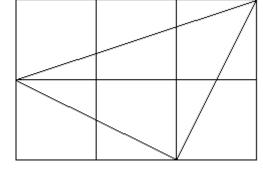
A) $2 + 2\sqrt{2}$ B) $2\sqrt{2 + \sqrt{2}}$ C) $2 + 2\sqrt{2} + \sqrt{2 + \sqrt{2}}$ D) $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$ E) NOTA

21) Find the measure of angle ADG.

A) $\frac{2\pi}{3}$ B) $\frac{\pi}{2}$ C) $\frac{\pi}{3}$ D) $\frac{\pi}{6}$ E) NOTA

22) Find all asymptotes of the function $f(x) = \cos\left(\csc^{-1}\left(\tan\left(\sec^{-1}(x)\right)\right)\right)$.

- A) $x = \pm 1$, y = 1 B) $x = \pm 1$, y = -1
- C) $x = 1, y = \pm 1$ D) $x = -1, y = \pm 1$ E) NOTA


23) Compute $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$. The diagram to the right may be of some use to you.

A) $\frac{\pi}{2}$ B) π C) $\frac{\pi}{4}$ D) $\frac{\pi}{6}$ E) NOTA

24) Brandon and Andrew are insects that are flying along the paths $y = \sin x$, $x = \pi t$ and

 $y = \cos x$, $x = \pi t - \pi$, respectively, starting at *t*=0. Will

they ever collide, and if so what is the first positive *t* value at which they collide?

25) What is the area of the triangle which has legs of length 5 and 7 which are separated by an angle of 15 degrees?

A) $\frac{35\sqrt{2}}{8}(\sqrt{3}-1)$ B) $\frac{35\sqrt{2}}{4}(\sqrt{3}-1)$ C) $\frac{35\sqrt{3}}{2}(\sqrt{2}-1)$ D) $\frac{35\sqrt{3}}{4}(\sqrt{2}-1)$ E) NOTA 26) Given that $\sec x = 4$, compute $\sqrt{\tan^2 2x - \sin^2 2x}$. A) $\frac{\sqrt{15}}{7}$ B) $\frac{\sqrt{7}}{15}$ C) $\frac{\sqrt{15}}{56}$ D) $\frac{15}{56}$ E) NOTA 27) Find the smallest n such that $x^n - 1 = 0$ has at least 5 solutions in the first quadrant (but not on an axis) of the Argand plane. A) *n* = 20 B) *n* = 21 C) *n* = 25 D) *n* = 24 E) NOTA 28) What shape is the graph of $x = 2 \tan t$? $y = 3 \sec t$? A) Circle B) Parabola C) Hyperbola D) Ellipse E) NOTA 29) Evaluate $\lim_{x\to 0} \frac{\sin(2x)}{\sin(x)}$ B) 0 C) 1 D) 2 A) Does Not Exist E) NOTA 30) Given that $f(x) = 3\sin(2x) + 4$, find the maximum value of 4f(x+1) - 3A) 3 B) 4 C) 14 D) 21 E) NOTA