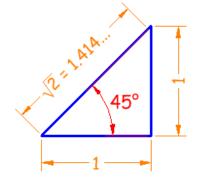

#1 Precalculus – Hustle MA© National Convention 2017

Find the cosine of the marked angle on the triangle to the nearest tenth:

#1 Precalculus – Hustle MA© National Convention 2017

Find the cosine of the marked angle on the triangle to the nearest tenth:

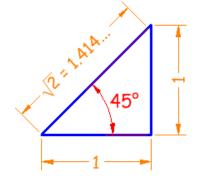


Answer :

Round 1 2 3 4 5

#1 Precalculus – Hustle MA© National Convention 2017

Find the cosine of the marked angle on the triangle to the nearest tenth:



Answer : _____

Round 1 2 3 4 5

#1 Precalculus – Hustle MA© National Convention 2017

Find the cosine of the marked angle on the triangle to the nearest tenth:

Answer	:						Answer	·:					
Round	1	2	3	4	5		Round	1	2	3	4	5	

#2 Precalculus – Hustle MA© National Convention 2017

If the circle with parametric equations $x=3+3\cos t$ and $y=5+3\sin t$ is written in the form $(x-h)^2 + (y-k)^2 = r^2$, where (h,k)

are the Cartesian coordinates of the center of the circle and *r* is the length of the radius of the circle, find the value of h+k+r.

#2 Precalculus – Hustle MA© National Convention 2017

If the circle with parametric equations $x=3+3\cos t$ and $y=5+3\sin t$ is written in the form $(x-h)^2 + (y-k)^2 = r^2$, where (h,k)

are the Cartesian coordinates of the center of the circle and *r* is the length of the radius of the circle, find the value of h+k+r.

Answer : _____

Round 1 2 3 4 5

Answer

Round

Answer : _____

Round 1 2 3 4 5

#2 Precalculus – Hustle MA© National Convention 2017

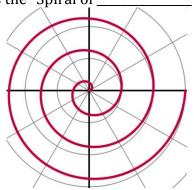
If the circle with parametric equations $x=3+3\cos t$ and $y=5+3\sin t$ is written in

the form $(x-h)^2 + (y-k)^2 = r^2$, where (h,k)

are the Cartesian coordinates of the center of the circle and *r* is the length of the radius of the circle, find the value of h+k+r.

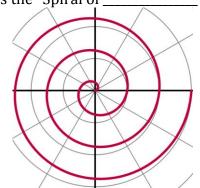
#2 Precalculus – Hustle MA© National Convention 2017

If the circle with parametric equations $x=3+3\cos t$ and $y=5+3\sin t$ is written in


the form $(x-h)^2 + (y-k)^2 = r^2$, where (h,k)

are the Cartesian coordinates of the center of the circle and *r* is the length of the radius of the circle, find the value of h+k+r.

:						Answer	· · _				
1	2	3	4	5		Round	1	2	3	4	5

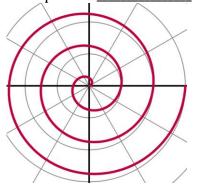

#3 Precalculus – Hustle MA© National Convention 2017

Fill in the blank: The following polar curve is known as the "Spiral of ______".

#3 Precalculus – Hustle MA© National Convention 2017

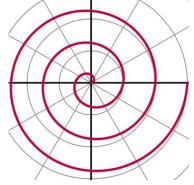
Fill in the blank: The following polar curve is known as the "Spiral of ______".

Answer :	
----------	--


Round 1 2 3 4 5

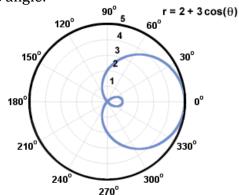
Answer : _____

Round 1 2 3 4 5

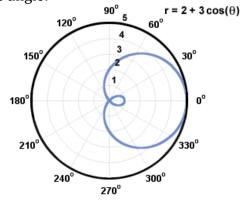

#3 Precalculus – Hustle MA© National Convention 2017

Fill in the blank: The following polar curve is known as the "Spiral of _____".

#3 Precalculus – Hustle MA© National Convention 2017


Fill in the blank: The following polar curve is known as the "Spiral of ______".

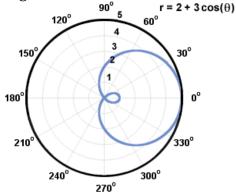
Answer	:							Answer	:					
Round	1	2	3	4	5			Round	1	2	3	4	5	


#4 Precalculus – Hustle MA© National Convention 2017

Find the ordered pair of polar coordinates for the point on the inner loop farthest from the pole, using the least possible positive radianmeasure angle:

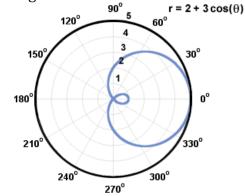
#4 Precalculus – Hustle MA© National Convention 2017

Find the ordered pair of polar coordinates for the point on the inner loop farthest from the pole, using the least possible positive radianmeasure angle:



Answer : _____

Round 1 2 3 4 5

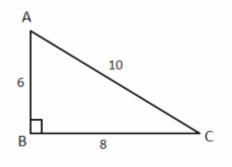

#4 Precalculus – Hustle MA© National Convention 2017

Find the ordered pair of polar coordinates for the point on the inner loop farthest from the pole, using the least possible positive radianmeasure angle:

#4 Precalculus – Hustle MA© National Convention 2017

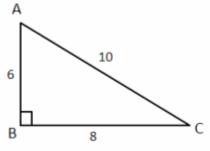
Find the ordered pair of polar coordinates for the point on the inner loop farthest from the pole, using the least possible positive radianmeasure angle:

Answer	:					Answer	:					
Round	1	2	3	4	5	Round	1	2	3	4	5	


Round 1 2 3 4 5

Answer : _

#5 Precalculus – Hustle MAO National Convention 2017


Which angle in the diagram has measure equal

to $\operatorname{Arcsin}\frac{3}{5}$? List the letter of the vertex of the angle:

#5 Precalculus - Hustle MA_O National Convention 2017

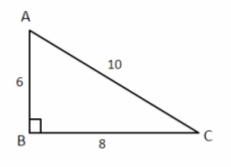
Which angle in the diagram has measure equal to Arcsin $\frac{3}{5}$? List the letter of the vertex of the angle:

Answer :	
----------	--

Round 1 2 3 4 5

#5 Precalculus – Hustle MAO National Convention 2017

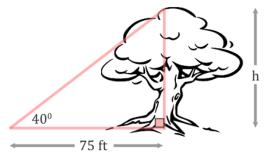
Which angle in the diagram has measure equal to $\operatorname{Arcsin} \frac{3}{5}$? List the letter of the vertex of the angle:



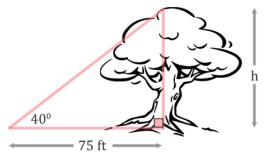
#5 Precalculus - Hustle MAO National Convention 2017

Round 1 2 3 4 5

Answer : _


Which angle in the diagram has measure equal to $\operatorname{Arcsin} \frac{3}{5}$? List the letter of the vertex of the angle:

Answer	:					Answer	:					
Round	1	2	3	4	5	Round	1	2	3	4	5	


#6 Precalculus – Hustle MA© National Convention 2017

Given that $\tan 40^{\circ} \approx 0.84$, find *h*, the height of the tree, to the nearest foot:

#6 Precalculus – Hustle MA© National Convention 2017

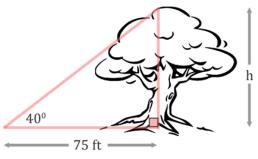
Given that $\tan 40^{\circ} \approx 0.84$, find *h*, the height of the tree, to the nearest foot:

Answer : _____

Round 1 2 3 4 5

Round 1 2 3 4 5

Answer : _____


#6 Precalculus – Hustle MA© National Convention 2017

Given that $\tan 40^{\circ} \approx 0.84$, find *h*, the height of the tree, to the nearest foot:

#6 Precalculus – Hustle MA© National Convention 2017

Given that $\tan 40^{\circ} \approx 0.84$, find *h*, the height of the tree, to the nearest foot:

Answer	:					Answer	:					
Round	1	2	3	4	5	Round	1	2	3	4	5	

#7 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by an isosceles right triangle with hypotenuse of length 24.

#7 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by an isosceles right triangle with hypotenuse of length 24.

Answer	;	
--------	---	--

Round 1 2 3 4 5

Answer : _____

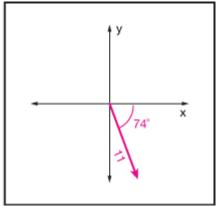
Round 1 2 3 4 5

#7 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by an isosceles right triangle with hypotenuse of length 24.

#7 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by an isosceles right triangle with hypotenuse of length 24.


Answer : _____

Round 1 2 3 4 5

Answer : _____

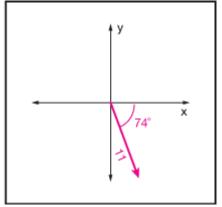
#8 Precalculus – Hustle MA© National Convention 2017

The vector in the diagram has a magnitude of 11, and the angle between the vector and the positive *x*-axis has measure 74°. Write the *y*-coordinate of the vector in the form $n\sin\theta$, where θ is the least possible positive degreemeasure angle and *n* is an integer.

Round 1 2 3 4 5

#8 Precalculus – Hustle MA© National Convention 2017

The vector in the diagram has a magnitude of 11, and the angle between the vector and the positive *x*-axis has measure 74° . Write the *y*-coordinate of the vector in the form $n\sin\theta$, where θ is the least possible positive degreemeasure angle and *n* is an integer.

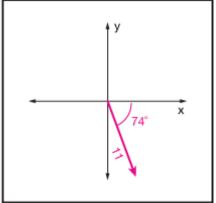


Answer : _____

Round 1 2 3 4 5

#8 Precalculus – Hustle MA© National Convention 2017

The vector in the diagram has a magnitude of 11, and the angle between the vector and the positive *x*-axis has measure 74°. Write the *y*-coordinate of the vector in the form $n\sin\theta$, where θ is the least possible positive degreemeasure angle and *n* is an integer.



Round 1 2 3 4 5

#8 Precalculus – Hustle MA© National Convention 2017

The vector in the diagram has a magnitude of 11, and the angle between the vector and the positive *x*-axis has measure 74°. Write the *y*-coordinate of the vector in the form $n\sin\theta$, where θ is the least possible positive degreemeasure angle and *n* is an integer.

#9 Precalculus – Hustle MA© National Convention 2017

Find the arc length on a circle of an arc with a central angle of 45° and diameter of 10 units.

#9 Precalculus – Hustle MA© National Convention 2017

Find the arc length on a circle of an arc with a central angle of 45° and diameter of 10 units.

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#9 Precalculus – Hustle MA© National Convention 2017

Find the arc length on a circle of an arc with a central angle of 45° and diameter of 10 units.

#9 Precalculus – Hustle MA© National Convention 2017

Find the arc length on a circle of an arc with a central angle of 45° and diameter of 10 units.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#10 Precalculus – Hustle MA© National Convention 2017

Evaluate the function $y = 4\cos(2x)$ at $x = \frac{3\pi}{8}$.

#10 Precalculus – Hustle MA© National Convention 2017

Evaluate the function $y = 4\cos(2x)$ at $x = \frac{3\pi}{8}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#10 Precalculus – Hustle MA© National Convention 2017

Evaluate the function $y = 4\cos(2x)$ at $x = \frac{3\pi}{8}$.

#10 Precalculus – Hustle MA© National Convention 2017

Evaluate the function $y = 4\cos(2x)$ at $x = \frac{3\pi}{8}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#11 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle whose vertices are at the points (0,0,0), (4,0,0), and (1,2,0).

#11 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle whose vertices are at the points (0,0,0), (4,0,0), and (1,2,0).

Answer : _____

Round 1 2 3 4 5

#11 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle whose vertices are at the points (0,0,0), (4,0,0), and

(1,2,0).

Answer : _____

Round 1 2 3 4 5

#11 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle whose vertices are at the points (0,0,0), (4,0,0), and

(1,2,0).

Answer : _____

Round 1 2 3 4 5

Answer : _____

#12 Precalculus – Hustle MA© National Convention 2017

Find the component form of the vector with initial point (1,2,0) and terminal point (4,0,0).

#12 Precalculus – Hustle MA© National Convention 2017

Find the component form of the vector with initial point (1,2,0) and terminal point (4,0,0).

Answer : _	
------------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#12 Precalculus – Hustle MA© National Convention 2017

Find the component form of the vector with initial point (1,2,0) and terminal point (4,0,0).

#12 Precalculus – Hustle MA© National Convention 2017

Find the component form of the vector with initial point (1,2,0) and terminal point (4,0,0).

Answer : _____

Round 1 2 3 4 5

Answer : _____

#13 Precalculus – Hustle MA© National Convention 2017

If $\vec{u} = \langle 1, 2, 0 \rangle$ and $\vec{v} = \langle 4, 0, 0 \rangle$, find $\vec{u} \times \vec{v}$ in component form.

#13 Precalculus – Hustle MA© National Convention 2017

If $\vec{u} = \langle 1, 2, 0 \rangle$ and $\vec{v} = \langle 4, 0, 0 \rangle$, find $\vec{u} \times \vec{v}$ in component form.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#13 Precalculus – Hustle MA© National Convention 2017

If $\vec{u} = \langle 1, 2, 0 \rangle$ and $\vec{v} = \langle 4, 0, 0 \rangle$, find $\vec{u} \times \vec{v}$ in component form.

#13 Precalculus – Hustle MA© National Convention 2017

If $\vec{u} = \langle 1, 2, 0 \rangle$ and $\vec{v} = \langle 4, 0, 0 \rangle$, find $\vec{u} \times \vec{v}$ in component form.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#14 Precalculus – Hustle MA© National Convention 2017

Classify the conic section whose polar equation is $r = \frac{24}{4 - 8\cos\theta}$.

#14 Precalculus – Hustle MA© National Convention 2017

Classify the conic section whose polar equation is $r = \frac{24}{4 - 8\cos\theta}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#14 Precalculus – Hustle MA© National Convention 2017

Classify the conic section whose polar equation is $r = \frac{24}{4 - 8\cos\theta}$.

#14 Precalculus – Hustle MA© National Convention 2017

Classify the conic section whose polar equation is $r = \frac{24}{4 - 8\cos\theta}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#15 Precalculus – Hustle MA© National Convention 2017

For the conic section with equation

 $r = \frac{24}{4 - 8\cos\theta}$, find the vertex with the greatest

value of *r*, written in polar form with angle in the interval $[0,2\pi)$.

#15 Precalculus – Hustle MA© National Convention 2017

For the conic section with equation $r = \frac{24}{4 - 8\cos\theta}$, find the vertex with the greatest value of *r*, written in polar form with angle in the interval $[0, 2\pi)$.

Answer :	
----------	--

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#15 Precalculus – Hustle MA® National Convention 2017

For the conic section with equation $r = \frac{24}{4 - 8\cos\theta}$, find the vertex with the greatest

value of *r*, written in polar form with angle in the interval $[0,2\pi)$.

#15 Precalculus – Hustle MA© National Convention 2017

For the conic section with equation $r = \frac{24}{4-8\cos\theta}$, find the vertex with the greatest value of *r*, written in polar form with angle in the interval $[0,2\pi)$.

Answer	:	
--------	---	--

Answer : _____

Round 1 2 3 4 5

#16 Precalculus – Hustle MA© National Convention 2017

Find the value of a_{21} for the matrix

$$A = \begin{bmatrix} 9/2 & -2 & -7/2 \\ -1 & 1 & 1 \\ -1/2 & 0 & 1/2 \end{bmatrix}.$$

#16 Precalculus – Hustle MA© National Convention 2017

Find the value of a_{21} for the matrix

$$A = \begin{bmatrix} \frac{9}{2} & -2 & -\frac{7}{2} \\ -1 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#16 Precalculus – Hustle MA© National Convention 2017

Find the value of a_{21} for the matrix

$$A = \begin{bmatrix} \frac{9}{2} & -2 & -\frac{7}{2} \\ -1 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

#16 Precalculus – Hustle MA© National Convention 2017

Find the value of a_{21} for the matrix

$$A = \begin{bmatrix} \frac{9}{2} & -2 & -\frac{7}{2} \\ -1 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#17 Precalculus – Hustle MA© National Convention 2017

Find the value of the determinant of the matrix

$$A = \begin{bmatrix} \frac{9}{2} & -2 & -\frac{7}{2} \\ -1 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

#17 Precalculus – Hustle MA© National Convention 2017

Find the value of the determinant of the matrix

$$A = \begin{bmatrix} 9/2 & -2 & -7/2 \\ -1 & 1 & 1 \\ -1/2 & 0 & 1/2 \end{bmatrix}.$$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#17 Precalculus – Hustle MA© National Convention 2017

Find the value of the determinant of the matrix

$$A = \begin{bmatrix} \frac{9}{2} & -2 & -\frac{7}{2} \\ -1 & 1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

#17 Precalculus – Hustle MA© National Convention 2017

Find the value of the determinant of the matrix

$$A = \begin{bmatrix} 9/2 & -2 & -7/2 \\ -1 & 1 & 1 \\ -1/2 & 0 & 1/2 \end{bmatrix}.$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#18 Precalculus – Hustle MA© National Convention 2017

Simplify, where defined: $\frac{\cot x \cos x}{\frac{1 - \sin^2 x}{\sin x}}$

#18 Precalculus – Hustle MA© National Convention 2017

Simplify, where defined: $\frac{\cot x \cos x}{\frac{1 - \sin^2 x}{\sin x}}$

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#18 Precalculus – Hustle MA© National Convention 2017

Simplify, where defined: $\frac{\cot x \cos x}{\frac{1 - \sin^2 x}{\sin x}}$

#18 Precalculus – Hustle MA© National Convention 2017

Simplify, where defined: $\frac{\cot x \cos x}{\frac{1 - \sin^2 x}{\sin x}}$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#19 Precalculus – Hustle MA© National Convention 2017

The graph of $r = 5\cos(n\theta)$, where *n* is a positive integer, is a rose with four petals. Find the value of *n*.

#19 Precalculus – Hustle MA© National Convention 2017

The graph of $r = 5\cos(n\theta)$, where *n* is a positive integer, is a rose with four petals. Find the value of *n*.

Answer :	_
----------	---

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

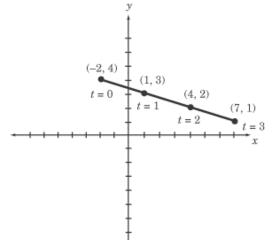
#19 Precalculus – Hustle MA© National Convention 2017

The graph of $r = 5\cos(n\theta)$, where *n* is a

positive integer, is a rose with four petals. Find the value of *n*.

#19 Precalculus – Hustle MA© National Convention 2017

The graph of $r = 5\cos(n\theta)$, where *n* is a positive integer, is a rose with four petals. Find the value of *n*.

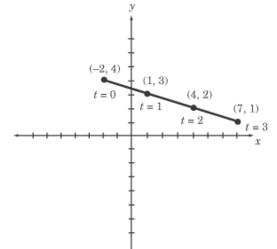

Answer : _____

Round 1 2 3 4 5

Answer : _____

#20 Precalculus – Hustle MA® National Convention 2017

Consider the following graph:

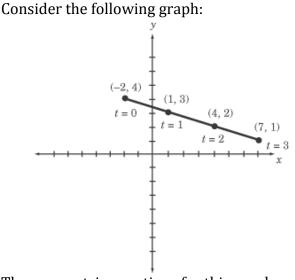

The parametric equations for this graph are x=3t-2 and y=f(t), where $0 \le t \le 3$. Find f(t).

Answer : _____

Round 1 2 3 4 5

#20 Precalculus – Hustle MA© National Convention 2017

Consider the following graph:

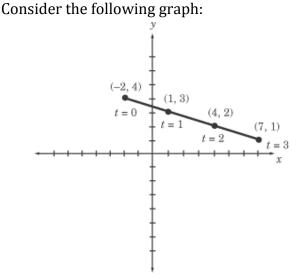


The parametric equations for this graph are x=3t-2 and y=f(t), where $0 \le t \le 3$. Find f(t).

Answer : _____

Round 1 2 3 4 5

#20 Precalculus – Hustle MA© National Convention 2017

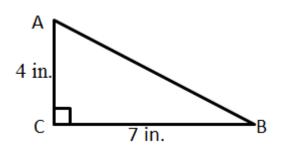


The parametric equations for this graph are x=3t-2 and y=f(t), where $0 \le t \le 3$. Find f(t).

Answer : _____

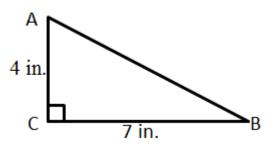
Round 1 2 3 4 5

#20 Precalculus – Hustle MA© National Convention 2017



The parametric equations for this graph are x=3t-2 and y=f(t), where $0 \le t \le 3$. Find f(t).

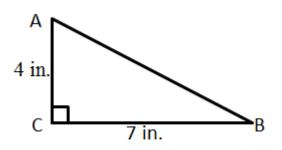
Answer : _____


#21 Precalculus – Hustle MA© National Convention 2017

Find the value of $\csc B \cdot \sin A$ using the diagram:

#21 Precalculus – Hustle MA© National Convention 2017

Find the value of $\csc B \cdot \sin A$ using the diagram:

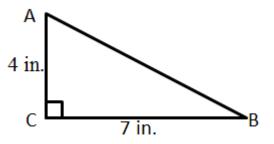


Answer : ____

Round 1 2 3 4 5

#21 Precalculus – Hustle MA© National Convention 2017

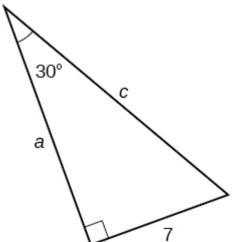
Find the value of $\csc B \cdot \sin A$ using the diagram:



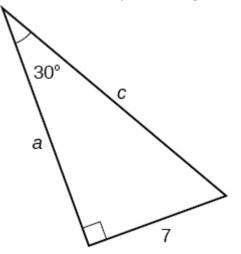
Answer : _____

Round 1 2 3 4 5

#21 Precalculus – Hustle MA© National Convention 2017


Find the value of $\csc B \cdot \sin A$ using the diagram:

Answer	:					Answer :							
Round	1	2	3	4	5	Round	1	2	3	4	5		

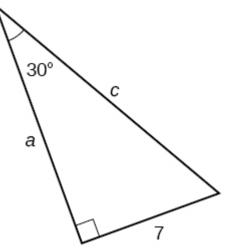

#22 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle:

#22 Precalculus – Hustle MA© National Convention 2017

Find the area enclosed by the triangle:

Answer : _____

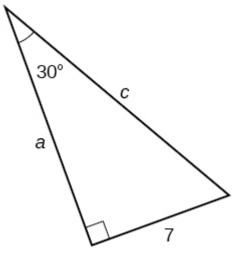

Round 1 2 3 4 5

Answer

Round

#22 Precalculus – Hustle MA® National Convention 2017

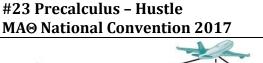
Find the area enclosed by the triangle:



Answer : _____

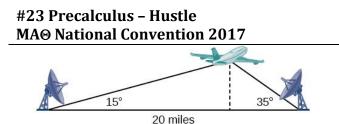
Round 1 2 3 4 5

#22 Precalculus – Hustle MA© National Convention 2017


Find the area enclosed by the triangle:

1 2 3 4 5 Round 1 2 3 4 5	:					Answer :									
	1	2	3	4	5	Round	1	2	3	4	5				

Given that $\tan 75^{\circ} \approx 3.73$ and $\tan 35^{\circ} \approx 0.7$, and that the distance between the satellites is 20 miles, find the altitude of the airplane, to the nearest mile.



Given that $\tan 75^{\circ} \approx 3.73$ and $\tan 35^{\circ} \approx 0.7$, and that the distance between the satellites is 20 miles, find the altitude of the airplane, to the nearest mile.

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

Given that $\tan 75^{\circ} \approx 3.73$ and $\tan 35^{\circ} \approx 0.7$, and that the distance between the satellites is 20 miles, find the altitude of the airplane, to the nearest mile.

#23 Precalculus – Hustle MA© National Convention 2017

Given that $\tan 75^{\circ} \approx 3.73$ and $\tan 35^{\circ} \approx 0.7$, and that the distance between the satellites is 20 miles, find the altitude of the airplane, to the nearest mile.

Answer :							Answer :									
Round	1	2	3	4	5				R	ound	1	2	3	4	5	

#24 Precalculus – Hustle MA© National Convention 2017

Solve the equation for all solutions in the interval $[0,2\pi)$: $\cos(2x) - \cos x = 0$

#24 Precalculus – Hustle MA© National Convention 2017

Solve the equation for all solutions in the interval $[0,2\pi)$: $\cos(2x) - \cos x = 0$

Answer : _____

Round 1 2 3 4 5

#24 Precalculus – Hustle MA© National Convention 2017

Solve the equation for all solutions in the interval $[0,2\pi)$: $\cos(2x) - \cos x = 0$

Answer : _____

Round 1 2 3 4 5

#24 Precalculus – Hustle MA© National Convention 2017

Solve the equation for all solutions in the interval $[0,2\pi)$: $\cos(2x) - \cos x = 0$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#25 Precalculus – Hustle MA© National Convention 2017

Evaluate: $\langle -2,1 \rangle \cdot \langle 1,7 \rangle$

#25 Precalculus – Hustle MA© National Convention 2017

Evaluate: $\langle -2,1 \rangle \cdot \langle 1,7 \rangle$

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#25 Precalculus – Hustle MA© National Convention 2017

Evaluate: $\langle -2,1 \rangle \cdot \langle 1,7 \rangle$

#25 Precalculus – Hustle MA© National Convention 2017

Evaluate: $\langle -2,1 \rangle \cdot \langle 1,7 \rangle$

Answer : _____

Round 1 2 3 4 5

Answer : _____