Answers:

Solutions:

- 1. Draw a right triangle with legs 200m and h, the height of the rocket. We have tan $\theta = \frac{h}{20}$ 200 where θ is the angle of elevation. Differentiate to obtain 200 sec² $\theta \frac{d\theta}{dt}$ $\frac{d\theta}{dt} = \frac{dh}{dt}$ $\frac{an}{dt}$. Plug in the given values to obtain $400 \frac{m}{s} = \frac{dh}{dt}$ $\frac{du}{dt}$. **A**
- 2. $a = \frac{dv}{dt}$ $\frac{dv}{dt} = \frac{2}{t}$ $\frac{2}{t} \to v_f = \int_1^3 \frac{2}{t}$ $\int_1^{3} \frac{2}{t} dt + v_0 = 2 \ln 3 - 2 \ln 1 + v_0$. We know $v_0 = 0$, giving us $v_f =$ 2 ln 3. **C**
- 3. $v(t) = 2 \ln t$. Using trapezoidal rule to approximate the area from $t = 1$ to $t = 3$, we have $d=\frac{1}{2}$ $\frac{1}{2}$ (2 ln 1 + 4 ln 2 + 2 ln 3) = 2 ln 2 + ln 3 = ln 12. **B**
- 4. Use the washer method. The radius of each disk is $x = \sqrt{2y}$, so the area of each disk is $\pi(2y)$. Integrate over all y values of interest to find volume: $\pi \int_0^2 2y dy = 4\pi$. **B**
- 5. The rocket hits terminal velocity when the net forces acting on it equal zero. In other words, this is when $f_{drag}=f_{gravity}=weight.$ Plugging in, $\frac{1}{2}pC(2^2\pi)\nu^2=100N\rightarrow \nu=\frac{5\sqrt{2}}{\sqrt{\pi}}$ $\frac{3\sqrt{2}}{\sqrt{\pi}}$. **E**
- 6. We are given the payload must be $3000kg$. Using the density, we find the volume must be 2.5 m^3 . The volume of the prism is given by 2.5 = $\frac{s^2\sqrt{3}}{4}$ $\frac{d^2\sqrt{3}}{4}h \to h = \frac{10}{s^2\sqrt{3}}$ $\frac{10}{s^2\sqrt{3}}$. Surface area is $\frac{s^2\sqrt{3}}{2}$ $\frac{1}{2}$ + $3sh = \frac{s^2\sqrt{3}}{2}$ $\frac{2\sqrt{3}}{2} + \frac{10\sqrt{3}}{s}$ $\frac{\partial \sqrt{3}}{\partial s}$. Take the derivative to and set equal to zero: $0 = s - \frac{10}{s^2}$ $\frac{10}{s^2} \to s = 10^{\frac{1}{3}}$. The function is concave up, so this must be a minimum. Plug back in to get $SA=\sqrt{3}*10^{\frac{2}{3}}*$ $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}+1\right) = \sqrt{3} \times 10^{\frac{2}{3}} \times \frac{3}{2}$ $\frac{3}{2}$. Approximate $\sqrt{3} \approx 2$, $10^{\frac{1}{3}} \approx 2$. So we have $SA \approx 12$. **B**
- 7. Vertical velocity component is $h'(t) = -3t^2 + 200t + 3 \rightarrow h'(1) = 200$. Horizontal component is $x'(t) = 100e^t \rightarrow x'(1) = 100e$. Magnitude is given by $\sqrt{200^2 + (100e)^2} \approx$ $\sqrt{200^2 + 100^2(2.7)^2} = 100\sqrt{4+7} = 100\sqrt{11} \approx 330$. **B**
- 8. We want to find when the vertical velocity of the rocket is zero. We differentiate $h(t)$ to find the velocity. $h'(t) = -3t^2 + 200t + 3 = 0$. Using the quadratic formula, we have positive root $\frac{200+\sqrt{200^2+36}}{6} \approx \frac{200}{3}$ $rac{80}{3} \approx 67.$ **B**
- 9. $\frac{dv}{dt} = -\frac{u}{M}$ M dM $\frac{dM}{dt}$ → integrate both sides → $\Delta \nu = -u\big(\ln m_f - \ln m_0\big) = u\ln\Big(\frac{m_0}{m_f}\Big)$ $\frac{m_0}{m_f}$). We know $m_0 = 135k$, and $m_f = 135k - 85k = 50k$, so $\Delta v = u \ln 2.7 \approx u$. **D**
- 10. Draw a right triangle on the bottom half of the sphere using the radius $R = 3$, the height h, giving the radius of the cross section $x^2 = R^2 - (R - h)^2$. Integrate this radius from 0 to h to get the volume of interest (disk method): $V = \pi \int_0^h (6h - h^2) dh$ $\int_0^h (6h - h^2) dh = \frac{1}{4}$ $rac{1}{4} igg(\frac{4}{3} igg)$ $\frac{4}{3}\pi 3^3$ \rightarrow 9h² – $h^3 = 27 \to h^3 - 9h^2 + 27 = f(h)$. Using Newton's method, we have $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $\frac{f^{(1)}(x_0)}{f'(x_0)} =$ $2-\frac{-1}{2}$ $\frac{-1}{-24}$ = 47/24. **A**
- 11. From the previous problem, we have $V = \pi \int_0^h (6h h^2) dh$ $\int_0^h (6h - h^2) dh = \pi \left(3h^2 - \frac{h^3}{3}\right)$ $\frac{1}{3}$). Differentiating, we have $dV = \pi (6h - h^2)dh$. We know that when the height is half full, $h = 3$, and $dV = r$, so $dh = \frac{r}{2r}$ $\frac{1}{9\pi}$. **D**
- 12. The waveform is some sinusoid: $v(t) = A \sin(t)$. Calculate the RMS value of this function by finding the average value over a period: $avg = \frac{1}{2pi} \int_0^{2pi} A^2 \sin^2 t \, dt = \frac{A^2}{2}$ $\frac{1}{2}$. Take the square root of this: $v_{RMS} = \frac{A}{\sqrt{2}}$ $\frac{A}{\sqrt{2}}$ = 120 → A = 120 $\sqrt{2}$. **A**
- 13. $P = i_{bat} v_{bat} = \frac{V}{r_{tot}}$ $\frac{V}{r+R}(iR) = \frac{V^2R}{(r+R)}$ $\frac{v}{(r+R)^2}$. Take the derivative of this with respect to R and set equal to zero: $\frac{(r+R)^2-2R(r+R)}{(r+R)^4} = 0 \rightarrow r = R$ **C**
- 14. The mean (or expected value) is $\int_{t=0}^{t=\infty} t \lambda e^{-\lambda t} dt = \frac{1}{\lambda}$ $\frac{1}{\lambda} = 20 \rightarrow \lambda = \frac{1}{20}$ $rac{1}{20}$ **C**
- 15. $P(T > 20) = \int_{20}^{\infty} \lambda e^{-\lambda t} dt = e^{-1}$ A
- 16. These curves are both halves of an ellipse. The top is $\frac{y^2}{2}$ $\frac{y^2}{9} + x^2 = 1$ and the bottom is $\frac{y^2}{4}$ $\frac{6}{4}$ + $x^2 = 1$. We take half the area of the top and half the area of the bottom: $\frac{1}{2}(3\pi + 2\pi) = \frac{5\pi}{2}$ $\frac{\pi}{2}$. **E**

17.
$$
A = \int \frac{1}{2} r^2 d\theta = \int_0^{2\pi} \frac{1}{2} (2 + 2\cos\theta)^2 d\theta = 6\pi
$$
. C

- 18. We want to find the x intercept of the line through $(-1, 2)$ and tangent to the curve (hill) $2x - x^2 \rightarrow m = 2 - 2x$. This is the slope between our transmitter and some point on the curve, so $m = 2 - 2x = \frac{(2x - x^2) - 2}{x}$ $\frac{x-x}{x-(-1)}$ → $x = -1 \pm \sqrt{5}$. Only the positive root can possibly lie on the curve in the area we care about, so $m = 2 - 2(-1 + \sqrt{5}) = 4 - 2\sqrt{5}$. We now solve for the x coordinate of $(x_0, 0)$ on the line: $4 - 2\sqrt{5} = \frac{0-2}{x_0+1}$ $\frac{0-2}{x_0+1} \to x_0 = 1 + \sqrt{5}$. **D**
- 19. Differentiate using quotient rule and set the derivative equal to zero: $\frac{(t+2)^2-2t(t+2)}{(t+2)^4}$ $\frac{y^2-2t(t+2)}{(t+2)^4}$. We are interested in the zero at $t = 2$. Plugging this into the original function, we get $1/8$. **C**
- 20. The station will maximize its listeners when $\frac{dL}{dt} = 0 = kL(780 − 12L) → L = 65$ **B**
- 21. The solution to the differential equation is of the form $P(t) = \frac{65}{1+66}$ $\frac{1}{1+Ce^{kt}}$. Using $P(0) = 1$ and $P(1) = 1$, we find that $C = 64$ and $k = \ln\left(\frac{11}{128}\right)$. We now plug in $t = 2$ and get $\frac{2*65*128}{2*128+121} \approx$ 2∗65 $\frac{3}{3}$ = 43.333. Notice that since we approximated 121 as 128, our approximation is a bit lower than the true value, as we increased the denominator while approximating. **C**
- 22. $\int f_h^2(t)dt = \int f_e^2(t) 2jf_e(t)f_0(t) f_0^2(t)dt = \int f_e^2(t) f_0^2(t)dt$ since the middle term is an odd function integrated from some –a to a, which is always 0. **A**
- 23. One statement is true. **A**
	- I. False. For example, consider aperiodic signals $f_1(t) = t + \sin t$, $f_2(t) = -x + \sin t$. Their sum $f_1 + f_2 = 2 \sin t$ is periodic
	- II. False. Consider two signals f_1, f_2 with periods 1 and $\sqrt{2}$ respectively. These two signals will never "match up," as $n(1) \neq m(\sqrt{2})$ for any integer n, m. Thus, their sum is not periodic
- III. True. This signal has period 1
- IV. False. The period of the cosine is 1, while the period of the sine is irrational. Thus, these signals never "match up," similar to II.
- 24. $\lim_{T\to\infty}$ 1 $\frac{1}{2T}\int_{-T}^{T}|\sin(t)|^2 dt = \lim_{T\to\infty}$ 1 $\frac{1}{2T} \int_{-T}^{T} \sin^2(t) dt = \frac{1}{2T}$ $\frac{1}{2\pi} \int_0^{2\pi} \sin^2(t) dt = \frac{1}{2}$ $\frac{1}{2}$ since the average value of the signal is the same as the average value over its period. $0 < \frac{1}{2}$ $\frac{1}{2}$ < ∞ , so this is a power signal. Intuitively, you only need to see the signal has a non-zero and non-infinite average value. **B**
- 25. There are an infinite number of pulses which do not get any smaller, so $E_x = \infty$. However, since the interval between the pulses increases but the pulses' magnitude does not, the average power over any interval approaches zero $P_x = 0$. Thus, the signal is neither an energy nor a power signal. **D**

26.
$$
\sin(t^2) \approx t^2 - \frac{t^6}{6}
$$
 by the Taylor series for $\sin(t)$. Plugging in 2, we get $4 - \frac{64}{6} = -\frac{20}{3}$. E

- 27. $E_x = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_0^{\infty} e^{-2at} dt = \left[-\frac{1}{2a} \right]$ $\frac{1}{2a}e^{-2at}\Big]_0$ $\infty = \frac{1}{2}$ $\frac{1}{2a}$ **A**
- 28. $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = \int_{0}^{\infty} e^{-(a+j\omega)t} dt = \left[-\frac{1}{a+i} \right]$ $\frac{1}{a+j\omega}e^{-(a+j\omega)t}$ 0 ∞ $=\frac{1}{\sqrt{2}}$ $\frac{1}{a+j\omega}$. **C**
- 29. $\frac{2/3}{2a} = \frac{1}{2a}$ $\frac{1}{2\pi}\int_{-W}^{W} |X(\omega)|^2 d\omega = \frac{1}{\pi}$ $\frac{1}{\pi} \int_0^W \frac{1}{a^2 + 1}$ $\frac{1}{\omega^2 + \omega^2} d\omega = \left[\frac{1}{a\pi}\right]$ $\frac{1}{a\pi}$ arctan $\frac{\omega}{a}$ $\frac{a}{a}$ ₀ W $=\frac{1}{1}$ $\frac{1}{a\pi}$ arctan $\frac{W}{a}$ $\frac{W}{a} = \frac{1}{3a}$ $\frac{1}{3a} \rightarrow \frac{1}{a}$ $\frac{1}{\Box}$ = tan $\frac{\pi}{3}$ $\frac{n}{3} \rightarrow$ $W = a\sqrt{3}$. **D**
- 30. $f'(x) = -3x^2 + 1 \rightarrow f'(1) = -2 < 0 \rightarrow$ decreasing. $f''(x) = -6x \rightarrow f''(1) = -6 < 0 \rightarrow$ concave down. **D**