Mu Applications Solutions MAO National Convention 2017

Answers:

1. A 7. B 13.C 19.C 25.D

2. C 8. B 14.C 20.B 26.E

3. B 9. D 15.A 21.C 27.A

4. B 10.A 16.E 22.A 28.C

5. E 11.D 17.C 23.A 29.D

6. B 12.A 18.D 24.B 30.D

Solutions:

1. Draw a right triangle with legs 200m and h, the height of the rocket. We have tan 8 = %
where @ is the angle of elevation. Differentiate to obtain 200 sec? i—f = z—i: . Plug in the
given values to obtain 400% = % . A

=%=%—>v =f13%dt+vo =2In3 - 2In1+ v,. We know vy = 0, giving us vy =
2In3. C

v(t) = 2Int. Using trapezoidal rule to approximate the areafromt = 1tot = 3, we have
d=-(2In1+4In2+2mn3)=2In2+In3=In12.8

Use the washer method. The radius of each disk is x = /2y, so the area of each disk is

m(2y). Integrate over all y values of interest to find volume: foz 2ydy = 4m. B

The rocket hits terminal velocity when the net forces acting on it equal zero. In other words,
. . L1 5v2
this is when farag = fyraviey = weight. Plugging in, E]DC(Zzn)v2 =100N »v="=E

We are given the payload must be 3000kg. Using the density, we find the volume must be

2 2

2.5m3. The volume of the prism is given by 2.5 = z \/gh - h= %. Surface area is > 3 +
2 1

3sh == f + %E. Take the derivative to and set equal to zero: 0 = s — g — s = 103.The

2
function is concave up, so this must be a minimum. Plug back in to get SA = /3 * 103 *
2 1
G + 1) =+/3 %103 * % Approximate v/3 = 2, 103 ~ 2. So we have SA =~ 12. B

Vertical velocity component is h'(t) = —3t? + 200t + 3 — h’(1) = 200. Horizontal
component is x’(t) = 100e’ — x'(1) = 100e. Magnitude is given by /2002 + (100e)? ~
\/2002 +1002(2.7)2 = 100v4 + 7 = 100v11 ~ 330. B
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8.

10.

11.

12.

13.

14.

15.

16.

17.

We want to find when the vertical velocity of the rocket is zero. We differentiate h(t) to
find the velocity. h'(t) = —3t% + 200t + 3 = 0. Using the quadratic formula, we have

. 200+v2002+36 _ 200
positive root Y 5= 67.B

dv u dM . .
— =~y — integrate both sides - Av = —u(lnm; —Inm,) = uln(

my = 135k, and my = 135k — 85k = 50k,soAv =uln2.7 = u.D

mo

). We know
mg

Draw a right triangle on the bottom half of the sphere using the radius R = 3, the height h,
giving the radius of the cross section x> = R? — (R — h)?2. Integrate this radius from O to h
to get the volume of interest (disk method): V = & foh(6h —h?¥)dh == (g n33) - 9h% —

4
h3 =27 - h3 — 9h? + 27 = f(h). Using Newton’s method, we have x; = x, — ]{,((9;0)) =
0

2— "L =47/24.A
—24

3
From the previous problem, we have V = nfoh(6h —h®)dh=m (3h2 - h?)
Differentiating, we have dV = m(6h — h?)dh. We know that when the height is half full,
h=3,anddV=r,sodh=£.D

The waveform is some sinusoid: v(t) = A sin(t). Calculate the RMS value of this function

7 2
by finding the average value over a period: avg = Zim,fozmA2 sin?tdt = A;. Take the

square root of this: vgys = % =120 - A =120V2. A
P=i — " (iR) = 2 Take the derivative of this with tto R and set
= lpatVbar = 77 (IR) = - Take the derivative of this with respect to R and se
2_
equaltozero:wz 0-r=RC
(r+R)*
. t=00 —At _ l _ _ l
The mean (or expected value) is ft:O tle *dt = 1= 200 A= ”

P(T >20) = [~ de Mdt=e™' A

2 2
These curves are both halves of an ellipse. The top is y? + x2? = 1 and the bottom is y: +
x? = 1. We take half the area of the top and half the area of the bottom: %(371 + 2m) = 52_n
E

21

A= f%ﬂd@ = [, 7= (2 + 2cos 0)2%df = 6. C
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18.

19.

20

21.

22.

23.

24,

25.

26.

We want to find the x intercept of the line through (—1, 2) and tangent to the curve (hill)
2x — x%2 - m = 2 — 2x. This is the slope between our transmitter and some point on the
_ (2x—x?)-2
x—(-1)
on the curve in the area we care about, som = 2 — 2(—1 4+ V/5) = 4 — 2v/5. We now solve

for the x coordinate of (x,,0) on the line: 4 — 2v/5 = ;121 —»Xy=14++5.D
0

curve,som = 2 — 2x —»x=-1++/5. Only the positive root can possibly lie

(t+2)%-2t(t+2)
(t+2)*
interested in the zero at t = 2. Plugging this into the original function, we get 1/8. C

Differentiate using quotient rule and set the derivative equal to zero: . We are

. The station will maximize its listeners when % =0=kL(780—-12L) > L =65B

The solution to the differential equation is of the form P(t) = %Sekt. Using P(0) = 1 and

. _ _ i . _ 2%65+128
5(6? =1, wefindthat C = 64 andk =In (128). We now plugint = 2 and get i

= 43.333. Notice that since we approximated 121 as 128, our approximation is a bit

lower than the true value, as we increased the denominator while approximating. C

[ f2dt = [ f2(t) = 2j£.(O)f,(t) — f2(O)dt = [ f2(t) — f2(t)dt since the middle term

is an odd function integrated from some —a to a, which is always 0. A

One statement is true. A
False. For example, consider aperiodic signals f;(t) = t + sint, f,(t) = —x + sint.
Their sum f; + f, = 2sint is periodic
False. Consider two signals f;, f, with periods 1 and V2 respectively. These two signals
will never “match up,” asn(1) # m(\/f) for any integer n, m. Thus, their sum is not
periodic
True. This signal has period 1
False. The period of the cosine is 1, while the period of the sine is irrational. Thus, these
signals never “match up,” similar to Il.

. i T . 2 _ . i T 2 _ i 2w, 2 _ 1 .
Jim — J_;Isin(®)|?dt = Jlim — J_psin?(t)dt = — Jy sin?(t)dt = - since the average
. . . . 1 .
value of the signal is the same as the average value over its period. 0 < 3 < 0,50 thisis a

power signal. Intuitively, you only need to see the signal has a non-zero and non-infinite
average value. B

There are an infinite number of pulses which do not get any smaller, so E, = c0. However,
since the interval between the pulses increases but the pulses” magnitude does not, the
average power over any interval approaches zero P, = 0. Thus, the signal is neither an
energy nor a power signal. D

6
sin(t?) ~ t? — % by the Taylor series for sin(t). Plugging in 2, we get 4 — %4 =— 23—0. E
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[ee]

. T oo _ 1 _ 1
27.E, = Jim [ Ix(0)[%dt = [, e 2%de = |~ me™2| = A

28. X(w) = f_oooox(t) e ot gt = fom e~ (@t gy — [_ a-I—ljw e—(a+ja))t] = a-l—ljw' C
0

1 o 1 w
—arctan—| = —arctan— =
arm a 0 arm a

23 _ 1 W 24y = L(W_1L
29. 2a_2nf—W|X(w)| dw—nf -

0 a’?+w? W=
W = a\/§.D

=l

1 T
— =tan- -
3a 3

30. f'(x) = =3x%2+1- f'(1) = =2 < 0 > decreasing. f"'(x) = —6x > f"(1) = -6 <0 >
concave down. D
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