#0 Mu Ciphering MA⊖ National Convention 2017

Evaluate: $\lim_{x \to -1} \frac{-3x^2 + 7x - 5}{2x^2 + 8x + 9}$

#0 Mu Ciphering MA⊖ National Convention 2017

Evaluate: $\lim_{x \to -1} \frac{-3x^2 + 7x - 5}{2x^2 + 8x + 9}$

#0 Mu Ciphering MA⊕ National Convention 2017

Evaluate: $\lim_{x \to -1} \frac{-3x^2 + 7x - 5}{2x^2 + 8x + 9}$

#0 Mu Ciphering MA⊕ National Convention 2017

Evaluate: $\lim_{x \to -1} \frac{-3x^2 + 7x - 5}{2x^2 + 8x + 9}$

#1 Mu Ciphering MA⊖ National Convention 2017

Evaluate:
$$\lim_{x \to -\infty} \frac{-4x^2 + 7x - 5}{\sqrt{4x^4 + 5x^3 - 1}}$$

#1 Mu Ciphering MA⊖ National Convention 2017

Evaluate:
$$\lim_{x \to -\infty} \frac{-4x^2 + 7x - 5}{\sqrt{4x^4 + 5x^3 - 1}}$$

#1 Mu Ciphering MA⊖ National Convention 2017

Evaluate:
$$\lim_{x \to -\infty} \frac{-4x^2 + 7x - 5}{\sqrt{4x^4 + 5x^3 - 1}}$$

#1 Mu Ciphering MA⊕ National Convention 2017

Evaluate:
$$\lim_{x \to -\infty} \frac{-4x^2 + 7x - 5}{\sqrt{4x^4 + 5x^3 - 1}}$$

#2 Mu Ciphering MA⊕ National Convention 2017

Find the equation, in slope-intercept form, of the tangent to $y = 4x^3 - 2x + 12$ at the point where x = 2.

#2 Mu Ciphering MA⊕ National Convention 2017

Find the equation, in slope-intercept form, of the tangent to $y = 4x^3 - 2x + 12$ at the point where x = 2.

#2 Mu Ciphering MA⊕ National Convention 2017

Find the equation, in slope-intercept form, of the tangent to $y = 4x^3 - 2x + 12$ at the point where x = 2.

#2 Mu Ciphering MA⊖ National Convention 2017

Find the equation, in slope-intercept form, of the tangent to $y = 4x^3 - 2x + 12$ at the point where x = 2.

#3 Mu Ciphering MA⊕ National Convention 2017

A rectangle is inscribed in the parabola with equation $y = x^2$, on or below the line with equation y = 147. Find the area enclosed by the largest such rectangle.

#3 Mu Ciphering MA⊕ National Convention 2017

A rectangle is inscribed in the parabola with equation $y = x^2$, on or below the line with equation y = 147. Find the area enclosed by the largest such rectangle.

#3 Mu Ciphering MA⊚ National Convention 2017

A rectangle is inscribed in the parabola with equation $y = x^2$, on or below the line with equation y = 147. Find the area enclosed by the largest such rectangle.

#3 Mu Ciphering MA⊚ National Convention 2017

A rectangle is inscribed in the parabola with equation $y = x^2$, on or below the line with equation y = 147. Find the area enclosed by the largest such rectangle.

#4 Mu Ciphering MA⊕ National Convention 2017

Find the domain of the real-valued function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{3 - x}}}$, written in interval notation.

#4 Mu Ciphering MA⊕ National Convention 2017

Find the domain of the real-valued function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{3 - x}}}$, written in interval notation.

#4 Mu Ciphering MA⊕ National Convention 2017

Find the domain of the real-valued function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{3 - x}}}$, written in interval notation.

#4 Mu Ciphering MA⊚ National Convention 2017

Find the domain of the real-valued function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{3 - x}}}$, written in interval notation.

#5 Mu Ciphering MA⊕ National Convention 2017

A continuous, real-valued function f satisfies f(3x) = 5f(x) for all x. Given that $\int_0^2 f(x) dx = 8$, find the value of $\int_2^6 f(x) dx$.

#5 Mu Ciphering MA⊖ National Convention 2017

A continuous, real-valued function f satisfies f(3x) = 5f(x) for all x. Given that $\int_{0}^{2} f(x) dx = 8$, find the value of $\int_{2}^{6} f(x) dx$.

#5 Mu Ciphering MA⊕ National Convention 2017

A continuous, real-valued function f satisfies f(3x) = 5f(x) for all x. Given that $\int_0^2 f(x) dx = 8$, find the value of $\int_2^6 f(x) dx$.

#5 Mu Ciphering MA⊕ National Convention 2017

A continuous, real-valued function f satisfies f(3x) = 5f(x) for all x. Given that $\int_0^2 f(x) dx = 8$, find the value of $\int_2^6 f(x) dx$.

#6 Mu Ciphering MA⊕ National Convention 2017

A positive, real-valued function f has domain $[0,\infty)$. A solid is generated by revolving the region bounded by f and the x-axis between x=0 and x=a, where a>0, about the x-axis, resulting in a volume of a^2 . Find the value of $f(\pi)$.

#6 Mu Ciphering MA⊚ National Convention 2017

A positive, real-valued function f has domain $[0,\infty)$. A solid is generated by revolving the region bounded by f and the x-axis between x=0 and x=a, where a>0, about the x-axis, resulting in a volume of a^2 . Find the value of $f(\pi)$.

#6 Mu Ciphering MA⊕ National Convention 2017

A positive, real-valued function f has domain $[0,\infty)$. A solid is generated by revolving the region bounded by f and the x-axis between x=0 and x=a, where a>0, about the x-axis, resulting in a volume of a^2 . Find the value of $f(\pi)$.

#6 Mu Ciphering MA⊚ National Convention 2017

A positive, real-valued function f has domain $[0,\infty)$. A solid is generated by revolving the region bounded by f and the x-axis between x=0 and x=a, where a>0, about the x-axis, resulting in a volume of a^2 . Find the value of $f(\pi)$.

#7 Mu Ciphering MA⊕ National Convention 2017

Let a_n be the nth term of a sequence defined recursively in the following way: $a_1=2$, $a_2=5$, and for any integer $n \ge 3$, $a_n=5a_{n-1}-6a_{n-2}$. Find the value of a_{10} .

#7 Mu Ciphering MA⊕ National Convention 2017

Let a_n be the nth term of a sequence defined recursively in the following way: $a_1 = 2$, $a_2 = 5$, and for any integer $n \ge 3$, $a_n = 5a_{n-1} - 6a_{n-2}$. Find the value of a_{10} .

#7 Mu Ciphering MA⊚ National Convention 2017

Let a_n be the nth term of a sequence defined recursively in the following way: $a_1 = 2$, $a_2 = 5$, and for any integer $n \ge 3$, $a_n = 5a_{n-1} - 6a_{n-2}$. Find the value of a_{10} .

#7 Mu Ciphering MA⊕ National Convention 2017

Let a_n be the nth term of a sequence defined recursively in the following way: $a_1=2$, $a_2=5$, and for any integer $n \ge 3$, $a_n=5a_{n-1}-6a_{n-2}$. Find the value of a_{10} .

#8 Mu Ciphering

MA® National Convention 2017

Evaluate:

$$\lim_{n\to\infty} \left(-\frac{1}{n} \sum_{i=0}^{n-1} \left(5 - 8 \left(\frac{\left(1 - \frac{i}{n}\right) + \left(1 - \frac{i+1}{n}\right)}{2} \right)^{3} \right) \right)$$

#8 Mu Ciphering MA⊕ National Convention 2017

Evaluate:

$$\lim_{n\to\infty} \left(-\frac{1}{n} \sum_{i=0}^{n-1} \left(5 - 8 \left(\frac{\left(1 - \frac{i}{n}\right) + \left(1 - \frac{i+1}{n}\right)}{2} \right)^{3} \right) \right)$$

#8 Mu Ciphering MA⊚ National Convention 2017

Evaluate:

$$\lim_{n\to\infty} \left(-\frac{1}{n} \sum_{i=0}^{n-1} \left(5 - 8 \left(\frac{\left(1 - \frac{i}{n}\right) + \left(1 - \frac{i+1}{n}\right)}{2} \right)^{3} \right) \right)$$

#8 Mu Ciphering MA⊕ National Convention 2017

Evaluate:

$$\lim_{n\to\infty} \left(-\frac{1}{n} \sum_{i=0}^{n-1} \left(5 - 8 \left(\frac{\left(1 - \frac{i}{n}\right) + \left(1 - \frac{i+1}{n}\right)}{2} \right)^{3} \right) \right)$$

#9 Mu Ciphering MA⊚ National Convention 2017

Find the solution, in the form y = f(x), to the initial-value problem $\ln\left(\frac{dy}{dx}\right) = x - y$, y(0) = 1.

#9 Mu Ciphering MA⊚ National Convention 2017

Find the solution, in the form y = f(x), to the initial-value problem $\ln\left(\frac{dy}{dx}\right) = x - y$, y(0) = 1.

#9 Mu Ciphering MA⊚ National Convention 2017

Find the solution, in the form y = f(x), to the initial-value problem $\ln\left(\frac{dy}{dx}\right) = x - y$, y(0) = 1.

#9 Mu Ciphering MA⊕ National Convention 2017

Find the solution, in the form y = f(x), to the initial-value problem $\ln\left(\frac{dy}{dx}\right) = x - y$, y(0) = 1.

#10 Mu Ciphering MA⊕ National Convention 2017

If
$$\int_0^{\sqrt{2}} \frac{1-x^2}{1+x^4} dx$$
 can be written in the form $\frac{\sqrt{2}}{4} \ln b$, where $b>0$ is real, find the value of b .
(HINT: $1+x^4=\left(1+\sqrt{2}x+x^2\right)\left(1-\sqrt{2}x+x^2\right)$)

#10 Mu Ciphering MA⊕ National Convention 2017

If
$$\int_0^{\sqrt{2}} \frac{1-x^2}{1+x^4} dx$$
 can be written in the form $\frac{\sqrt{2}}{4} \ln b$, where $b > 0$ is real, find the value of b .
(HINT: $1+x^4 = \left(1+\sqrt{2}x+x^2\right)\left(1-\sqrt{2}x+x^2\right)$)

#10 Mu Ciphering MA⊕ National Convention 2017

If
$$\int_0^{\sqrt{2}} \frac{1-x^2}{1+x^4} dx$$
 can be written in the form $\frac{\sqrt{2}}{4} \ln b$, where $b > 0$ is real, find the value of b . (HINT: $1+x^4 = \left(1+\sqrt{2}x+x^2\right)\left(1-\sqrt{2}x+x^2\right)$)

#10 Mu Ciphering MA⊕ National Convention 2017

If
$$\int_0^{\sqrt{2}} \frac{1-x^2}{1+x^4} dx$$
 can be written in the form $\frac{\sqrt{2}}{4} \ln b$, where $b > 0$ is real, find the value of b .
(HINT: $1+x^4 = \left(1+\sqrt{2}x+x^2\right)\left(1-\sqrt{2}x+x^2\right)$)

#11 Mu Ciphering MA® National Convention 2017

Find the inflection point of the function $y = 3x^5 + 5x^4 - 80x^3 - 360x^2 + 1400x + 72$, written as an ordered pair.

#11 Mu Ciphering MA⊕ National Convention 2017

Find the inflection point of the function $y = 3x^5 + 5x^4 - 80x^3 - 360x^2 + 1400x + 72$, written as an ordered pair.

#11 Mu Ciphering MA⊕ National Convention 2017

Find the inflection point of the function $y = 3x^5 + 5x^4 - 80x^3 - 360x^2 + 1400x + 72$, written as an ordered pair.

#11 Mu Ciphering MA⊚ National Convention 2017

Find the inflection point of the function $y = 3x^5 + 5x^4 - 80x^3 - 360x^2 + 1400x + 72$, written as an ordered pair.

#12 Mu Ciphering MA® National Convention 2017

The volume of the solid obtained by revolving the region bounded by $y=\sqrt{2}e^x$, $y=\sqrt{3}x$, x=0, and x=1 about the x-axis can be written in the form $A\pi$, where A is real. Find the value of A.

#12 Mu Ciphering MA® National Convention 2017

The volume of the solid obtained by revolving the region bounded by $y = \sqrt{2}e^x$, $y = \sqrt{3}x$, x = 0, and x = 1 about the x-axis can be written in the form $A\pi$, where A is real. Find the value of A.

#12 Mu Ciphering MA⊚ National Convention 2017

The volume of the solid obtained by revolving the region bounded by $y = \sqrt{2}e^x$, $y = \sqrt{3}x$, x = 0, and x = 1 about the x-axis can be written in the form $A\pi$, where A is real. Find the value of A.

#12 Mu Ciphering MA⊚ National Convention 2017

The volume of the solid obtained by revolving the region bounded by $y=\sqrt{2}e^x$, $y=\sqrt{3}x$, x=0, and x=1 about the x-axis can be written in the form $A\pi$, where A is real. Find the value of A.