Answers:

- 1. A
- 2. B
- 3. D
- 4. A
- 5. B
- 6. A
- 7. E
- 8. B
- 9. A
- 10. C
- 11. C 12. B
- 13. D
- 14. B
- 15. D
- 16. A
- 17. E
- 18. B
- 19. A
- 20. C
- 21. B
- 22. C
- 23. E
- 24. C
- 25. A
- 26. E
- 27. B
- 28. B
- 29. C
-
- 30. B

Solutions:

1. $f'(1) = f(1 - 1) = f(0) = 1$. A

2. Splitting up the fraction suggests that this differential equation is homogeneous. $\frac{x^2+y^2}{2mx}$ $\frac{y}{2xy} =$ 1 $rac{1}{2}(\frac{x}{y})$ $\frac{x}{y} + \frac{y}{x}$ $\frac{y}{x}$). Make the substitution $y = ux$ and simplify. $u'x + u = \frac{1}{2}$ $rac{1}{2}\left(u+\frac{1}{u}\right)$ $\frac{1}{u}$) $\rightarrow \frac{dx}{x}$ $\frac{dx}{x} = \frac{2udu}{1-u^2}$ $\frac{2u}{1-u^2}$. Integrating both sides results in: $\ln |x| = -\ln |1-u| - \ln |1+u| + C \rightarrow x(1-u^2) = C \rightarrow$ $y^2 = x^2 - Cx$. Plugging in initial condition and simplifying gives $y = x$ (since y is positive). Now, evaluating $y(e)$ gives a final answer of e . **B**

3. Taking a derivative, $g^{'}(x) = f^{'}(x) - 2f'(2x)$. Plugging in the two values we obtain two simultaneous equations. $5 = f^{'}(1) - 2f'(2x)$ and $7 = f^{'}(2) - 2f'(4)$. What we want to obtain is $h^{'}(1) = f^{'}(1) - 4f'(4)$. We can see that this expression can be evaluated by eliminating a variable in our system of equations. Multiplying the second equation by 2 and adding yields: $f^{'}(1) - 4f^{'}(4) = 19$. **D**

4. The key to this problem is realizing that the left side of the equation is simply the derivative of the product. It easily simplifies to: $(\sin t * y)' = \sec^2 t$. Integrating both sides goes to: y sin $t = \tan t + C$. Plugging in the initial value the equation now becomes $y(t) =$ sec t. Plugging in the desired value the answer is -1 . **A**

5. The integral that is precisely placed in the problem suggests that the second fundamental theorem of calculus may be useful. Deriving both sides gives: $2f(x)f^{'}(x) = f(x)^{2} + f^{'}(x)^{2}$. This is simply the expansion of $(f(x) - f^{'}(x))^{2}$. The equation now becomes $f(x) = f^{'}(x)$. Separating and solving gives $f(x) = Ce^x$ as the set of all solutions. Using the initial value it becomes $f(x) = e^x$. Finally, $f(1) = e$ which is closest to 3. **B**

6. Cross multiplying this differential equation insists that $N(x, y) = 6ye^{x} - x^{2}$ and $M(x, y) = 6$ $-2xy + \sin x + 3y^2 e^x$. Hence, $\frac{\partial M}{\partial y} = 6ye^x - 2x = \frac{\partial N}{\partial x}$ and the equation is exact. **A**

7. Since this equation is exact, we can begin by integrating $F(x, y) = \int M(x, y) dx + h(y)$. $F(x, y) = \int (-2xy + \sin x - 3y^2 e^x) dx + h(y) = -x^2y - \cos x + 3y^2 e^x + h(y)$. Taking the derivative of our newly found F should be equal to $N(x, y)$. $\frac{\partial F}{\partial y} = N(x, y) = 6ye^{x} - x^{2} = 6$ $-x^2 + 6ye^x + h'(y) \rightarrow h(y) = C$. Hence, our solution is of the form $= -x^2y - \cos x +$ $3y^2e^x = C$. Plugging in the initial value gives a value of $C = 11$. **E**

8.
$$
M(x, y) = 2x \cos y - x^2
$$
 and $N(x, y) = x^2 \sin y$. $\frac{\partial M}{\partial y} = -2x \sin y$, $\frac{\partial N}{\partial x} = 2x \sin y$. Not exact.
B

9. This is a differential equation that is proportional to the amount present. Hence: $\frac{dy}{dt} = ky$. $\int \frac{1}{\pi}$ $\int \frac{1}{y} dy = k dt \rightarrow y = C e^{kt}$. Plugging in $t = 0 \rightarrow C = 100$. Plugging in $t = 1$ hour $\rightarrow k = 1$ $\ln\frac{3}{4}$. Therefore the desired equation is: $10 = 100\left(\frac{3}{4}\right)$ $\left(\frac{3}{4}\right)^t \to \log_{3/4} 1/10.$ A

10. Simplify follow the instructions and add a constant of proportionality. $\frac{dA}{dt} = k(M - A(t)).$ **C**

11. Separating this differential allows for an easy solve. $\frac{dA}{M-A(t)} = kdt \rightarrow \int \frac{dA}{M-A(t)}$ $\frac{dA}{dt} = \int k dt \rightarrow$ $-\ln(M - A(t)) = kt + C \rightarrow A(t) = M - Ce^{-kt}$. Note since k is the same constant as problem 10, this cannot simplified to $A(t) = M + Ce^{kt}$. A

12. Given are the following pieces of information $A(0) = 0$, $A(100) = 50$, and $M = 100$. Given this, $A(t) = 100(1 - e^{-\frac{t}{10}}$ $\frac{t}{100}$ ln ²). We hence need to solve 75 = $100(1-e^{-\frac{t}{100}})$ $\frac{c}{100}$ ln 2). $t =$ 200 or 100 more hours. **B**

13. Polynomial equations of the form $f(x) = x^d$ are the form such that this differential equation is true for any value of c. $f'(\frac{a}{b})$ $\left(\frac{a}{x}\right) = a^{d-1} * dx^{1-d}$ and $\frac{x}{f(x)} = x^{1-d}$. Hence, values of a will make the following equal to each other. **D**

14. d_n takes the form: $d_n = \det |$ $\cos 1$ $\cos 2$ $\cos 3$ $cos(n + 1) cos(n + 2) cos(n + 3)$ \mathbf{i} … … ⋮ $\cos n$ $cos(2n)$ ⋮) T . We can prove that $d_n = 0$ by showing that the sum of two rows is in fact a scalar multiple of another row in the determinant. The sum of the first and the third rows is the row: $=$ (2 cos(2) cos(−1) $2 \cos(n + 2) \cos(-1)$ ⋮). This row is the same as row two, except with a scalar multiple of $2 \cos(-1)$. Hence, $d_n = 0$. **B**

15.
$$
(fgh)' = f'(gh) + fg'h + fgh' = \frac{(fg)'h + (gh)'f + (hf)'g}{2}
$$
. Evaluating at 0 we have:

$$
\frac{6*3+4*1+5*2}{2} = 16.
$$
 D

16. Factoring the right side to be able to separate and solve: $(1 + y) + x^2(1 + y) =$ $(1 + x^2)(1 + y) \rightarrow \frac{dy}{1 + y^2}$ $\frac{dy}{1+y} = (1+x^2)dx \rightarrow \int \frac{dy}{1+y^2}$ $\frac{dy}{1+y} = \int (1+x^2)dx \to y = Ce^{x+\frac{x^3}{3}}$ $\overline{3}$ – 1. **A**

17. The question asks for all solutions to the differential equation. All of the given answer choices do not have a constant of integration, therefore they cannot be correct (the answer is choice A + a constant of integration). **E**

18. Consider the answer choices. It appears that x needs to be independent of the differential equation so A is eliminated. Plotting points reveals that $\frac{dy}{dx} = 2 - y$ is the best fit for the slope field present. **B**

19. Process of elimination is another excellent approach for this slope field question. It can be seen to be the correct answer by taking the derivative of equation. $y' = \frac{x^3}{\sigma^2}$ $\frac{x}{y^2}$. The variable that changes signs of the slope is x which matches that on the slope field. **A**

20. We need to check which time the velocity is 0 and check if the sign changes at these points. $s' = v = 3t^2 - 12t + 9 = 0 \rightarrow t = 1,3$. Since this is quadratic, they change signs at both times. **C**

21. In order to get to 1.2, we need to do two cycles of Euler's method. $y(1.1) = y(1) +$ $\Delta x(y'(1)) \rightarrow y(1.1) = 0 + .1(1) = .1.$ $y(1.2) = .1 + .1(1.2) = .22.$ **B**

22. The highest derivative in this equation is a third derivative. Hence, 3rd order. **C**

23. It is fair to treat the water as relatively equal throughout the duration of the problem since the rate coming in is the same as the rate going out. A differential equation describing the changing amount of salt inside the tank is equal to the rate coming in minus the rate going out. Rate going in = $\left(2 \frac{kg}{l}\right)$ $\left(\frac{\mu g}{L}\right) \left(3\frac{L}{min}\right) = 6\ kg/min.$ Rate going out = $-\frac{3}{10}$ $\frac{3}{100}$ S. The overall differential equation is: $\frac{dS}{dt} = 6 - \frac{3}{10}$ $\frac{3}{100}$ S. Solve this equation either by using a characteristic polynomial or with an integrating factor. The general form of the solution is $200 + c_1 e^{-\frac{3t}{100}}$. Plugging in $S(0) = 0, c_1 = -200. S(t) = 200 - 200e^{-\frac{3t}{100}}. S(100) = 200 - 200e^{-3}.$ **E**

24. $\frac{200 \text{ kg}}{100 \text{ L}} = 2 \text{ kg/L}$. C

25. Implicitly derive this two variable expression with respect to x: $6x - 2xy^3 - 3x^2y^2 \frac{dy}{dx}$ $\frac{dy}{dx} +$ $4\frac{dy}{dx}$ $\frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{2xy^3 - 6x}{4 - 3x^2y^2}$ $\frac{2xy^3-6x}{4-3x^2y^2} \rightarrow \frac{dy}{dx}$ $\frac{dy}{dx}$ = −3. Using differentials: $f(1.97) = 0 + (-3)(-.03) = .09$. **A**

26. An obvious start is to attempt to factor this expression. Difference of cubes yields $\sin^6\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)$ + cos⁶ $\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right) = \left(\sin^2\left(\frac{x}{4}\right)\right)$ $\left(\frac{x}{4}\right) + \cos^2\left(\frac{x}{4}\right)$ $\frac{x}{4}$))(sin⁴ $\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right) - \sin^2\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)$ + cos⁴ $\left(\frac{x}{4}\right)$ $\frac{x}{4})$ = $\sin^4\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right) - \sin^2\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)$ + cos⁴ $\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right) = \left(\sin^2\left(\frac{x}{4}\right)\right)$ $\left(\frac{x}{4}\right) + \cos^2\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)$)^2 – 3 sin^2 $\left(\frac{x}{4}\right)$ $\left(\frac{x}{4}\right)$ cos^2 $\left(\frac{x}{4}\right)$ $\frac{x}{4}$) \rightarrow $1-\frac{3}{4}$ $\frac{3}{4}$ sin $x \to f^{2017} = -\frac{3}{4}$ $\frac{3}{4}$. **E**

27. For the purposes of this problem, lets assume that $|x| < 1$ so that we can sum up the summation. $\frac{dy}{dx} = \frac{1}{1+}$ $\frac{1}{1+x}$ \rightarrow $y = \ln|1 + x| + C$. Using the initial condition, $y\left(\frac{1}{2}\right)$ $\frac{1}{2}$) = ln 3, y = $\ln(1 + x) + \ln 2$. $y\left(\frac{3}{4}\right)$ $\binom{3}{4}$ = ln $\binom{7}{2}$ $(\frac{2}{2})$. **B**

28. The pattern will be seen if the first few terms are drawn out. $g = x + e^x - \sin x$, $g' =$ $1 + e^x - \cos x$, $g'' = e^x + \sin x$, $g''' = e^x + \cos x$, $g^{(4)} = e^x - \sin x$, $g^{(5)} = e^x - \cos x$. Hence, it will repeat after 4 derivatives. The function and its first derivative both have values 1. The sum of 4 derivatives is equal to 4 since the trig terms cancel out. Four goes into 2017, 504 times with one left over. Hence the answer is $4(504) + 2 = 2018$. **C**

29. Begin by taking the derivative of both sides of the equation: $\frac{dy}{dx} = \frac{x}{y-1}$ $\frac{x}{y-1}$. Hence, the tangent line through point (a,b) that follows this requirement has the form: $y = \left(\frac{a}{b}\right)^2$ $\frac{a}{b-1}$ $(x-a)+b \rightarrow$ $b^2 - a^2 = b$. Another equation from the equation of the curve is $a^2 - (b - 1)^2 = 1$. Solving, by elimination results in $a = \pm \sqrt{2}$, $b = 2$. Hence, the positive root is the only that gives a positive slope. arcsin $\left(\frac{\sqrt{2}}{2}\right)$ $\frac{\sqrt{2}}{2}$ = $\frac{\pi}{4}$ $\frac{n}{4}$. **C**

30. First, take the derivative. $\ln f = x \ln x \rightarrow \frac{f'}{f}$ $\frac{dI}{dt} = 1 + \ln x \rightarrow f' = x^x(1 + \ln x)$. Now, we can solve the equation: $f'(x) = f(x) \rightarrow x^x = x^x(1 + \ln x) \rightarrow x^x = 0$ or $1 + \ln x = 1$. Hence, the only solution is 1. **B**