#1 Precalculus – Hustle MA⊕ National Convention 2015

Solve for x: $|x|^2 - |x| - 2 = 4$

#1 Precalculus - Hustle MA⊕ National Convention 2015

Solve for x: $|x|^2 - |x| - 2 = 4$

Answer : _____

Round 1 2 3 4 5

#1 Precalculus - Hustle MA⊕ National Convention 2015

Solve for x: $|x|^2 - |x| - 2 = 4$

Answer : _____

Round 1 2 3 4 5

#1 Precalculus - Hustle MA® National Convention 2015

Solve for x: $|x|^2 - |x| - 2 = 4$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#2 Precalculus - Hustle MA⊕ National Convention 2015

In how many ways can Jack plant three oak trees and six willow trees in a row if no two oak trees can be next to each other? Assume trees of the same type are indistinguishable.

#2 Precalculus - Hustle MA⊕ National Convention 2015

In how many ways can Jack plant three oak trees and six willow trees in a row if no two oak trees can be next to each other? Assume trees of the same type are indistinguishable.

Answer		

Round 1 2 3 4 5

#2 Precalculus – Hustle MA® National Convention 2015

In how many ways can Jack plant three oak trees and six willow trees in a row if no two oak trees can be next to each other? Assume trees of the same type are indistinguishable.

Answer : _____

Round 1 2 3 4 5

#2 Precalculus - Hustle MA⊕ National Convention 2015

In how many ways can Jack plant three oak trees and six willow trees in a row if no two oak trees can be next to each other? Assume trees of the same type are indistinguishable.

Answer : ______

Answer : _____

Round 1 2 3 4 5

#3 Precalculus – Hustle MA⊕ National Convention 2015

Evaluate:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$

#3 Precalculus – Hustle MA⊕ National Convention 2015

Evaluate:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$

_		
Answer:		
Allowel .		

Round 1 2 3 4 5

#3 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$

Answer : _____

Round 1 2 3 4 5

#3 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#4 Precalculus - Hustle	
MAΘ National Convention 2015	

Find the sum of all $x \in [0, 2\pi)$ such that $\cos(2x) = \sin(x)$.

#4 Precalculus - Hustle MA⊕ National Convention 2015

Find the sum of all $x \in [0, 2\pi)$ such that $\cos(2x) = \sin(x)$.

Answer : _____

Round 1 2 3 4 5

#4 Precalculus - Hustle MA® National Convention 2015

Find the sum of all $x \in [0, 2\pi)$ such that $\cos(2x) = \sin(x)$.

Answer : _____

Round 1 2 3 4 5

#4 Precalculus - Hustle MA⊕ National Convention 2015

Find the sum of all $x \in [0, 2\pi)$ such that $\cos(2x) = \sin(x)$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#5 Precalculus – Hustle MA⊕ National Convention 2015

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Find
$$a+b-(c+d)$$
.

#5 Precalculus - Hustle MA⊕ National Convention 2015

$$\begin{bmatrix}
1 & 2 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}$$

Find
$$a+b-(c+d)$$
.

Answer : _____

Round 1 2 3 4 5

#5 Precalculus - Hustle MA⊕ National Convention 2015

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Find a+b-(c+d).

Answer : _____

Round 1 2 3 4 5

#5 Precalculus - Hustle MA⊕ National Convention 2015

$$\begin{bmatrix}
1 & 2 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}$$

Find a+b-(c+d).

Answer : ______

Answer : _____

Round 1 2 3 4 5

#6 Precalculus – Hustle MA⊕ National Convention 2015

Find the positive difference between the maximum and minimum y values among all points on the graph of $r^2 = 4r(\cos \theta) - 3$.

#6 Precalculus - Hustle MA⊕ National Convention 2015

Find the positive difference between the maximum and minimum y values among all points on the graph of $r^2 = 4r(\cos \theta) - 3$.

Answer : _____

Round 1 2 3 4 5

#6 Precalculus – Hustle MA⊕ National Convention 2015

Find the positive difference between the maximum and minimum y values among all points on the graph of $r^2 = 4r(\cos \theta) - 3$.

Answer : _____

Round 1 2 3 4 5

#6 Precalculus – Hustle MA⊕ National Convention 2015

Find the positive difference between the maximum and minimum y values among all points on the graph of $r^2 = 4r(\cos \theta) - 3$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#7 Precalculus – Hustle MA⊕ National Convention 2015

$$\mathbf{u} = \mathbf{i} - \mathbf{k}$$

$$\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

Find
$$2(\mathbf{u} \cdot \mathbf{v})^2 + |\mathbf{u} \times \mathbf{v}|^2$$
.

#7 Precalculus – Hustle MA⊕ National Convention 2015

$\mathbf{u} = \mathbf{i} - \mathbf{k}$

$$\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

Find
$$2(\mathbf{u} \cdot \mathbf{v})^2 + |\mathbf{u} \times \mathbf{v}|^2$$
.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#7 Precalculus – Hustle MA⊕ National Convention 2015

$$\mathbf{u} = \mathbf{i} - \mathbf{k}$$

$$\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

Find
$$2(\mathbf{u} \cdot \mathbf{v})^2 + |\mathbf{u} \times \mathbf{v}|^2$$
.

#7 Precalculus – Hustle MA⊕ National Convention 2015

$$\mathbf{u} = \mathbf{i} - \mathbf{k}$$

$$\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

Find
$$2(\mathbf{u} \cdot \mathbf{v})^2 + |\mathbf{u} \times \mathbf{v}|^2$$
.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#8 Precalculus – Hustle MA⊕ National Convention 2015

Robert, Ryan, Jay, Case, and Theo are playing a dice game where the players roll one standard fair die. Robert starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability Jay wins?

#8 Precalculus - Hustle
MA® National Convention 2015

Robert, Ryan, Jay, Case, and Theo are playing a dice game where the players roll one standard fair die. Robert starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability Jay wins?

Answer:		

Round 1 2 3 4 5

#8 Precalculus – Hustle MA© National Convention 2015

Robert, Ryan, Jay, Case, and Theo are playing a dice game where the players roll one standard fair die. Robert starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability Jay wins?

Answer : _____

Round 1 2 3 4 5

#8 Precalculus – Hustle MA⊕ National Convention 2015

Robert, Ryan, Jay, Case, and Theo are playing a dice game where the players roll one standard fair die. Robert starts, and they take turns in the aforementioned order. If the first person to roll a 5 or higher wins, what is the probability Jay wins?

Answer : _____ Answer : ____

Round 1 2 3 4 5 Round 1 2 3 4 5

#9 Precalculus - Hustle MA⊕ National Convention 2015

Let α equal the smaller angle of intersection between y = 2x and x - 2y = 20. Find $\csc \alpha$.

#9 Precalculus - Hustle MA⊕ National Convention 2015

Let α equal the smaller angle of intersection between y = 2x and x - 2y = 20. Find $\csc \alpha$.

Answer		

Round 1 2 3 4 5

#9 Precalculus - Hustle MA⊕ National Convention 2015

Let α equal the smaller angle of intersection between y = 2x and x - 2y = 20. Find $\csc \alpha$. Answer : _____

Round 1 2 3 4 5

#9 Precalculus - Hustle MA® National Convention 2015

Let α equal the smaller angle of intersection between y = 2x and x - 2y = 20. Find $\csc \alpha$.

Answer : ______

Answer : ______

Round 1 2 3 4 5

#10 Precalculus - Hustle MA⊕ National Convention 2015

Given $\cos x = \frac{3}{5}$ and that the terminal side of x lies within the first quadrant, evaluate: $3\sin^2 x + 8\tan^2 x + \csc^2 x + 25\sin^2 x + 3\cos^2 x$ $-8\sec^2 x - \cot^2 x$

#10 Precalculus - Hustle MA⊕ National Convention 2015

Given $\cos x = \frac{3}{5}$ and that the terminal side of x lies within the first quadrant, evaluate: $3\sin^2 x + 8\tan^2 x + \csc^2 x + 25\sin^2 x + 3\cos^2 x$ $-8\sec^2 x - \cot^2 x$

_		
Answer	:	

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#10 Precalculus - Hustle MA⊕ National Convention 2015

Given $\cos x = \frac{3}{5}$ and that the terminal side of x lies within the first quadrant, evaluate: $3\sin^2 x + 8\tan^2 x + \csc^2 x + 25\sin^2 x + 3\cos^2 x$ $-8\sec^2 x - \cot^2 x$

#10 Precalculus - Hustle MA⊕ National Convention 2015

Given $\cos x = \frac{3}{5}$ and that the terminal side of x lies within the first quadrant, evaluate: $3\sin^2 x + 8\tan^2 x + \csc^2 x + 25\sin^2 x + 3\cos^2 x$ $-8\sec^2 x - \cot^2 x$

Answer : _____

Round 1 2 3 4 5

Answer:_

#11 Precalculus - Hustle MA⊕ National Convention 2015

Let θ be the smallest positive angle of counterclockwise rotation so that the major and minor axes of $4x^2 + 4xy + 4y^2 + 2x + 7y + 1 = 0$ coincide with the x and y axes. Find $\sin \theta$.

#11 Precalculus – Hustle MA⊕ National Convention 2015

Let θ be the smallest positive angle of counterclockwise rotation so that the major and minor axes of $4x^2 + 4xy + 4y^2 + 2x + 7y + 1 = 0$ coincide with the x and y axes. Find $\sin \theta$.

_	
Answer	
AII3WCI	

Round 1 2 3 4 5

#11 Precalculus - Hustle MA® National Convention 2015

Let θ be the smallest positive angle of counterclockwise rotation so that the major and minor axes of $4x^2 + 4xy + 4y^2 + 2x + 7y + 1 = 0$ coincide with the x and y axes. Find $\sin \theta$.

Answer : _____

Round 1 2 3 4 5

#11 Precalculus - Hustle MA® National Convention 2015

Let θ be the smallest positive angle of counterclockwise rotation so that the major and minor axes of $4x^2 + 4xy + 4y^2 + 2x + 7y + 1 = 0$ coincide with the x and y axes. Find $\sin \theta$.

Answer : _____

Answer : ______

Round 1 2 3 4 5

#12 Precalculus - Hustle MA⊕ National Convention 2015

Given $2f(x) + f\left(\frac{1}{x}\right) = x$, find f(x) as a single fraction.

#12 Precalculus – Hustle MA⊕ National Convention 2015

Given $2f(x) + f\left(\frac{1}{x}\right) = x$, find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

#12 Precalculus - Hustle MA⊕ National Convention 2015

Given $2f(x) + f\left(\frac{1}{x}\right) = x$, find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

#12 Precalculus – Hustle MA® National Convention 2015

Given $2f(x) + f\left(\frac{1}{x}\right) = x$, find f(x) as a single fraction.

Answer : _____

Round 1 2 3 4 5

Round 1 2 3 4 5

Answer : _____

#13 Precalculus - Hustle MA® National Convention 2015

Given $(\log_a b)^{16} + (\log_b a)^{16} = 47$, where a and b are real numbers with all logarithms defined, find $(\log_a b)^6 + (\log_b a)^6$.

#13 Precalculus – Hustle MA® National Convention 2015

Given $(\log_a b)^{16} + (\log_b a)^{16} = 47$, where a and b are real numbers with all logarithms defined, find $(\log_a b)^6 + (\log_b a)^6$.

_	
Answer	
Allowel	

Round 1 2 3 4 5

#13 Precalculus - Hustle MA® National Convention 2015

Given $(\log_a b)^{16} + (\log_b a)^{16} = 47$, where a and b are real numbers with all logarithms defined, find $(\log_a b)^6 + (\log_b a)^6$.

Answer : _____

Round 1 2 3 4 5

#13 Precalculus – Hustle MA® National Convention 2015

Given $(\log_a b)^{16} + (\log_b a)^{16} = 47$, where a and b are real numbers with all logarithms defined, find $(\log_a b)^6 + (\log_b a)^6$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#14 Precalculus - Hustle MA⊕ National Convention 2015

What is the area enclosed by a regular 24-gon inscribed in a circle with radius 1?

#14 Precalculus - Hustle		
MAΘ National Convention 2	201	5

What is the area enclosed by a regular 24-gon inscribed in a circle with radius 1?

_		
Inswer		

Round 1 2 3 4 5

#14 Precalculus – Hustle MA® National Convention 2015

What is the area enclosed by a regular 24-gon inscribed in a circle with radius 1?

Answer : _____

Round 1 2 3 4 5

#14 Precalculus – Hustle MA® National Convention 2015

What is the area enclosed by a regular 24-gon inscribed in a circle with radius 1?

Answer : _____

Answer : _____

Round 1 2 3 4 5

#15 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{\sin^3\left(\frac{\pi}{12}\right) + \cos^3\left(\frac{\pi}{12}\right)}$$

#15 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{\sin^3\left(\frac{\pi}{12}\right) + \cos^3\left(\frac{\pi}{12}\right)}$$

Answer	
AllSWCI	

Round 1 2 3 4 5

#15 Precalculus – Hustle MA⊕ National Convention 2015

Evaluate:
$$\frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{\sin^3\left(\frac{\pi}{12}\right) + \cos^3\left(\frac{\pi}{12}\right)}$$

Answer : _____

Round 1 2 3 4 5

#15 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\frac{\sin\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)}{\sin^3\left(\frac{\pi}{12}\right) + \cos^3\left(\frac{\pi}{12}\right)}$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#16 Precalculus - Hustle MA⊕ National Convention 2015

Zach is struggling to figure out what |3+4i| equals and asks Will for help. If Will is always correct, what answer does he get?

#16 Precalculus - Hustle		
MA⊕ National Convention 2	201	5

Zach is struggling to figure out what |3+4i| equals and asks Will for help. If Will is always correct, what answer does he get?

Answer		

Round 1 2 3 4 5

#16 Precalculus – Hustle MA® National Convention 2015

Zach is struggling to figure out what |3+4i| equals and asks Will for help. If Will is always correct, what answer does he get?

Answer : _____

Round 1 2 3 4 5

#16 Precalculus - Hustle MA⊕ National Convention 2015

Zach is struggling to figure out what |3+4i| equals and asks Will for help. If Will is always correct, what answer does he get?

Answer : _____

Answer : _____

Round 1 2 3 4 5

#17 Precalculus – Hustle MA⊕ National Convention 2015

Find A such that

$$\sum_{n=1}^{\infty} \frac{1}{\sum_{i=0}^{n} \binom{n}{i}} = \ln(A)$$

#17 Precalculus – Hustle MA® National Convention 2015

Find A such that

$$\sum_{n=1}^{\infty} \frac{1}{\sum_{i=0}^{n} \binom{n}{i}} = \ln(A)$$

Answer : _____

Round 1 2 3 4 5

Round 1 2 3 4 5

#17 Precalculus - Hustle MA® National Convention 2015

Find A such that

$$\sum_{n=1}^{\infty} \frac{1}{\sum_{i=0}^{n} \binom{n}{i}} = \ln(A)$$

#17 Precalculus - Hustle MA⊕ National Convention 2015

Answer : _____

Find A such that

$$\sum_{n=1}^{\infty} \frac{1}{\sum_{i=0}^{n} \binom{n}{i}} = \ln(A)$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#18 Precalculus - Hustle MA⊕ National Convention 2015

Gabe makes a regular, convex polygon by connecting the roots of $\chi^6 = 64$ when plotted on the complex plane. Find the area enclosed by this polygon.

#18 Precalculus – Hustle MA⊕ National Convention 2015

Gabe makes a regular, convex polygon by connecting the roots of $x^6 = 64$ when plotted on the complex plane. Find the area enclosed by this polygon.

A	
Answer :	
Aliowci .	

Round 1 2 3 4 5

#18 Precalculus - Hustle MA⊕ National Convention 2015

Gabe makes a regular, convex polygon by connecting the roots of $x^6 = 64$ when plotted on the complex plane. Find the area enclosed by this polygon.

Answer : _____

Round 1 2 3 4 5

#18 Precalculus - Hustle MA⊕ National Convention 2015

Gabe makes a regular, convex polygon by connecting the roots of $x^6 = 64$ when plotted on the complex plane. Find the area enclosed by this polygon.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#19 Precalculus - Hustle MA⊕ National Convention 2015

What is the distance between the polar coordinates $\left(3, -\frac{\pi}{12}\right)$ and $\left(4, \frac{\pi}{4}\right)$?

#19 Precalculus - Hustle MA⊕ National Convention 2015

What is the distance between the polar coordinates $\left(3, -\frac{\pi}{12}\right)$ and $\left(4, \frac{\pi}{4}\right)$?

Answer	:	

Round 1 2 3 4 5

#19 Precalculus – Hustle MA⊕ National Convention 2015

What is the distance between the polar coordinates $\left(3, -\frac{\pi}{12}\right)$ and $\left(4, \frac{\pi}{4}\right)$?

Answer : _____

Round 1 2 3 4 5

#19 Precalculus – Hustle MA® National Convention 2015

What is the distance between the polar coordinates $\left(3, -\frac{\pi}{12}\right)$ and $\left(4, \frac{\pi}{4}\right)$?

Answer : _____

Round 1 2 3 4 5

Answer : _____

#20 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate: $\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - x} \right)$

#20 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - x} \right)$$

Answer : _____

Round 1 2 3 4 5

#20 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate:
$$\lim_{x\to\infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - x} \right)$$

Answer : _____

Round 1 2 3 4 5

#20 Precalculus - Hustle MA⊕ National Convention 2015

Evaluate: $\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - x} \right)$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#21 Precalculus - Hustle MA⊕ National Convention 2015

If Ankit invests \$5 in a bank account with 5% interest compounded continuously, how long (in years) will it take for his money to grow to \$2015?

#21 Precalculus - Hustle MA⊕ National Convention 2015

If Ankit invests \$5 in a bank account with 5% interest compounded continuously, how long (in years) will it take for his money to grow to \$2015?

_		
Answer	•	

Round 1 2 3 4 5

#21 Precalculus - Hustle MA⊕ National Convention 2015

If Ankit invests \$5 in a bank account with 5% interest compounded continuously, how long (in years) will it take for his money to grow to \$2015?

Answer : _____

Round 1 2 3 4 5

#21 Precalculus - Hustle MA® National Convention 2015

If Ankit invests \$5 in a bank account with 5% interest compounded continuously, how long (in years) will it take for his money to grow to \$2015?

Answer : _____

Answer : _____

Round 1 2 3 4 5

#22 Precalculus - Hustle MA® National Convention 2015

Find the length of the longest altitude in a triangle with side lengths 7, 8, and 9.

#22 Precalculus - Hustle		
MA⊕ National Convention 2	201	5

Find the length of the longest altitude in a triangle with side lengths 7, 8, and 9.

_		
Answer:		

Round 1 2 3 4 5

#22 Precalculus – Hustle MA© National Convention 2015

Find the length of the longest altitude in a triangle with side lengths 7, 8, and 9.

Answer : _____

Round 1 2 3 4 5

#22 Precalculus - Hustle MA⊕ National Convention 2015

Find the length of the longest altitude in a triangle with side lengths 7, 8, and 9.

Answer : _____

Answer : ______

Round 1 2 3 4 5

#23 Precalculus - Hustle
MAΘ National Convention 2015
What raint is the result of the raint (2.4) has

What point is the result of the point (2,4) being rotated 60 degrees about the origin?

#23 Precalculus - Hustle MA⊕ National Convention 2015

What point is the result of the point (2,4) being rotated 60 degrees about the origin?

Answer : _____

Round 1 2 3 4 5

#23 Precalculus – Hustle MA® National Convention 2015

What point is the result of the point (2,4) being rotated 60 degrees about the origin?

Answer : _____

Round 1 2 3 4 5

#23 Precalculus - Hustle MA⊕ National Convention 2015

What point is the result of the point (2,4) being rotated 60 degrees about the origin?

Answer : _____

Answer : _____

Round 1 2 3 4 5

#24 Precalculus – Hustle MA⊕ National Convention 2015

Find the shortest distance between the graphs of y = x+1 and y = x-1.

#24 Precalculus – Hustle MA⊕ National Convention 2015

Find the shortest distance between the graphs of y = x+1 and y = x-1.

Answer : _____

Round 1 2 3 4 5

#24 Precalculus - Hustle MA© National Convention 2015

Find the shortest distance between the graphs of y = x + 1 and y = x - 1.

Answer : _____

Round 1 2 3 4 5

#24 Precalculus – Hustle MA© National Convention 2015

Find the shortest distance between the graphs of y = x+1 and y = x-1.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#25 Precalculus - Hustle MA® National Convention 2015

Find the maximum area of a triangle with sides of lengths $\cos 15^{\circ}$ and $\sin 15^{\circ}$.

#25 Precalculus - Hustle	
MAΘ National Convention 2	015

Find the maximum area of a triangle with sides of lengths $\cos 15^{\circ}$ and $\sin 15^{\circ}$.

_		
Answer:		

Round 1 2 3 4 5

#25 Precalculus - Hustle MA® National Convention 2015

Find the maximum area of a triangle with sides of lengths $\cos 15^{\circ}$ and $\sin 15^{\circ}$.

Answer : _____

Round 1 2 3 4 5

#25 Precalculus – Hustle MA© National Convention 2015

Find the maximum area of a triangle with sides of lengths $\cos 15^{\circ}$ and $\sin 15^{\circ}$.

Answer : _____

Answer : _____

Round 1 2 3 4 5