Answers:

Solutions:

- 1. Taking the first and second derivatives we get the functions $v(t) = \sin t + t \cos t$ and $a(t) = 2 \cos t - t \sin t$. $v\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right) = 1, a\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$ $\frac{\pi}{2}$. This means Ankit is slowing down. **B**
- 2. We know $A = \frac{s^2 \sqrt{3}}{4}$ $\frac{d^2\sqrt{3}}{4}$ and $P = 3s$. Deriving, we get $\frac{dA}{dt}$ $\frac{dA}{dt} = \frac{s\sqrt{3}}{2}$ 2 ds $rac{ds}{dt}$ and $rac{dP}{dt} = 3 \frac{ds}{dt}$ $\frac{ds}{dt}$. We are given that the area and perimeter are changing at the same rate, so we can substitute 3 $\frac{ds}{dt}$ dt for $\frac{dA}{dt}$. 3 $\frac{ds}{dt}$ $\frac{ds}{dt} = \frac{s\sqrt{3}}{2}$ 2 ds $\frac{ds}{dt} \rightarrow s = 2\sqrt{3}$. **A**
- 3. In Newton's method, $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ $\frac{f(x_n)}{f'(x_n)}$. For this function, we have $x_{n+1} = x_n - \frac{x_n^3 + x_n}{3x_n^2 + 1}$ $\frac{\lambda n \cdot \lambda n}{3x_n^2+1}$. $x_1 = 1 - \frac{2}{4}$ $\frac{2}{4}$ = 1/2. $x_2 = \frac{1}{2}$ $\frac{1}{2} - \frac{5/8}{7/4}$ $\frac{376}{7/4}$ = 1/7. **C**
- 4. The ladder can be viewed as the hypotenuse of a right triangle while sliding down the building, so we have $x^2 + y^2 = 100$. After two seconds, the top will have moved 2ft down the building, giving us a leg of $y = 8$ ft $\rightarrow x = 6$ ft. We derive the Pythagorean theorem to get $x \frac{dx}{dt}$ $\frac{dx}{dt} + y \frac{dy}{dt}$ $\frac{dy}{dt} = 0 \rightarrow 6 \frac{dx}{dt}$ $\frac{dx}{dt} + 8(-1) = 0 \rightarrow \frac{dx}{dt}$ $\frac{dx}{dt} = 4/3.$ **A**
- 5. Profit is given by revenue cost. $P = x(10,000 10x) (1,000 + 30(10,000 10x))$. Simplify to get the parabola $P = -10x^2 + 10{,}300x - 301{,}000$. The maximum is at $x =$ $-\frac{b}{a}$ $\frac{b}{2a}$ = \$515 **C**
- 6. $\frac{1}{n+1}$ $\frac{1}{n+1} + \frac{1}{n+1}$ $\frac{1}{n+2} + \dots + \frac{1}{2n}$ $\frac{1}{2n} = \lim_{n \to \infty}$ 1 $rac{1}{n} \sum_{i=1}^{n} \frac{1}{1+n}$ $1+\frac{i}{n}$ \boldsymbol{n} $\frac{n}{i} = 1 \frac{1}{1+i} = \int_0^1 \frac{1}{x+1}$ $\int_0^1 \frac{1}{x+1} dx = \ln 2$. Thus, the answer is 1 – ln 2. **C**
- 7. One could use the ratio test or recognize this as an infinite geometric series. Both yield $|\ln(2x)| < 1 \rightarrow -1 < \ln(2x) < 1 \rightarrow \frac{1}{2}$ $\frac{1}{e}$ < 2x < e $\to \frac{1}{2e}$ $\frac{1}{2e}$ < x < $\frac{e}{2}$ $\frac{2}{2}$. **D**
- 8. Notice that this value is in the desired range. We use the formula for an infinite geometric series: $\sum_{n=1}^{\infty} \left(\ln \left(\frac{2\sqrt{e}}{2} \right) \right)$ $\frac{\sqrt{e}}{2}$)) $\sum_{n=1}^{\infty}$ $\left(\ln\left(\frac{2\sqrt{e}}{2}\right)\right)^n = \frac{\ln\sqrt{e}}{1-\ln\sqrt{e}}$ $\frac{\ln \sqrt{e}}{1-\ln \sqrt{e}} = 1$ **B**
- 9. For these parametric equations, we have $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{dy}{dt}$ dt dt $\frac{dt}{dx} = 2t(-e^t)$, and $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \frac{dt}{dx}$ $\frac{du}{dx} =$ $\left(\frac{d}{dt}\right)$ $\frac{d}{dt}(-2te^{t})\Big)(-e^{t}) = 2e^{2t}(t+1)$. At $t = 2$, this is 6 e^{4} . **D**
- 10. For the purposes of this problem, let's treat the Earth as a sphere of radius 2. This means that the denominator of our fraction is $\frac{4}{3}\pi r^3 = \frac{32\pi}{3}$ $\frac{2\pi}{3}$. Using trig, we see that the 60th parallel cuts this sphere $\sqrt{3}$ above/below from the center. We can find the volume of one of these regions by rotating a portion of the first quadrant quarter circle $y = \sqrt{4 - x^2}$ about the x axis using the disk method: $V=2\pi\int_{\sqrt{3}}^2(\sqrt{4-x^2})^2dx=2\pi\left(4x-\frac{x^3}{3}\right)$ $\frac{1}{3}\Big|_{\sqrt{3}}$ 2 $= 2\pi * \frac{16-9\sqrt{3}}{2}$ $\frac{3}{3}$. Thus, our fraction is $\frac{2\pi*\frac{16-9\sqrt{3}}{3}}{32\pi}$ $rac{3}{32\pi}$ 3 $=\frac{16-9\sqrt{3}}{16}$ $\frac{1}{16}$. **D**
- 11. We are given Dr. Evil starts at rest, so $v_D(0) = 0$. We can treat P as the reference, so $x_D(0) = 0$. Thus, we integrate Dr. Evil's acceleration twice to get $x_D(t) = \frac{3}{4}$ $\frac{3}{4}t^2$. Austin runs at a constant speed but starts six seconds later, so $v_A(t) = v(t-6)$ where v is the speed at which Austin runs. We are trying to find the minimum v for which they meet, or in other words, for which $\frac{3}{4}t^2 = v(t-6) \rightarrow 3t^2 - 4vt + 24v = 0$ has a solution. The slowest Austin can run is when he only catches Dr. Evil once (versus passing then being passed). This equation has one solution when its discriminant is zero: $0 = b^2 - 4ac = 16v^2 4(24)(3)v = 0 \rightarrow v^2 - 18v = 0 \rightarrow v = 18$, $v = 0$. Only the positive answer makes sense in the context of this question. **B**
- 12. If a projectile is fired at velocity v and angle θ above the horizontal, the initial y component of the velocity is v sin θ and the initial x component is v cos θ . There is no acceleration in the x direction, so $x(t) = vt \cos \theta$. Integrating the constant acceleration of gravity, we get $y(t) = vt \sin \theta - 5t^2$. The distance between Austin and the projectile is $D(t) =$ $\sqrt{(x(t))^{2} + (y(t))^{2}} = \sqrt{v^{2}t^{2} - 10vt^{3}\sin\theta + 25t^{4}}$ using the Pythagorean identity. This distance will never decrease if its derivative is never negative. We can ignore the square root for this part since it is always nonnegative. $D'(t) = t(100t^2 - (30v \sin \theta)t^2 + 2v^2)$. Since t is never negative, this function is nonnegative if the parabola $100t^2$ $(30v \sin \theta)t^2 + 2v^2$ never crosses the x axis. This means its discriminant is less than or equal to zero: $900v^2 \sin^2 \theta - 4(100)(2v^2) \leq 0 \to \sin^2 \theta \leq \frac{8}{9}$ $\frac{8}{9} \rightarrow \sin \theta \leq \frac{2\sqrt{2}}{3}$ $\frac{1}{3}$. A
- 13. Initial vertical velocity is 120 sin 1 $\approx 120 \left(1 \frac{1}{2}\right)$ $\frac{1}{3!} + \frac{1}{5!}$ $\left(\frac{1}{5!}\right)$ = 120 – 20 + 1 = 101 **C**
- 14. The amount of coolant left at time t is $C(t) = C rt$. We are given $v(t) = k(C rt)$. This tells us that $v = 0$ when $t = C/r$. Integrate velocity to find distance traveled $(x(0) = 0$ since we are only concerned distance while coolant is leaking): $x(t) = kCt - \frac{1}{2}$ $rac{1}{2}krt^2$. Plugging in $t = C/r$, we get $\frac{kC^2}{r}$ $\frac{\mathcal{C}^2}{r} - \frac{1}{2}$ $rac{1}{2} * \frac{kC^2}{r}$ $\frac{C^2}{r} = \frac{kC^2}{2r}$ $\frac{16}{2r}$. **B**
- 15. If n is odd, the flower has n petals, and if n is even, the flower has $2n$ petals. This means, a flower can have any odd number of petals, but only an even number of petals that is a multiple of 4. Thus, 18 is an invalid number of petals. **D**
- 16. The cycloid has one arch between 0 and 2π , so the total perimeter is the curve length between two points plus the segment along the x axis with length 2π . The curve length is $\int_0^{2\pi} \sqrt{(x'(t))^2 + (y'(t))^2} dt = 2 \int_0^{2\pi} \sqrt{2 - 2 \cos t} dt =$ $\int_0^{2\pi} \sqrt{2-2\cos t} \, dt = -8\cos\frac{\theta}{2}$ $\frac{6}{2} \Big|_0$ 2π $= 16$. The total perimeter is $16 + 4\pi$. A

17.
$$
P(100) \approx P(125) - 25(P'(125)) = 75 - 25\left(\frac{2}{5}\right) = 65.
$$
 B

- 18. The axis of symmetry is at $x = 0$, so $\bar{x} = 0$. $\bar{y} = \frac{1}{2}$ $\frac{1}{2A} \int_{-2}^{2} (16 - x^4) dx = \frac{3}{64} \left(16x - \frac{x^5}{5} \right)$ $rac{c}{5}\Big|_{-2}$ 2 $) =$ $rac{3}{64} igg(\frac{4(64)}{5} igg)$ $\left(\frac{64}{5}\right) = \frac{12}{5}$ $\frac{12}{5}$. A
- 19. $C'(50) = \frac{2}{50}$ $\frac{2}{50} = \frac{1}{25}$ $\frac{1}{25}$ **A**
- 20. To achieve maximum area, one base must be along the diameter with a vertex at each side. This base will have length 2, and other base will have length 2x. The height of the trapezoid, given by the y coordinate of the semicircle is $\sqrt{1-x^2}$. Thus, we are maximizing the function $A = \frac{1}{2}$ $\frac{1}{2}(2+2x)\sqrt{1-x^2} = \sqrt{1-x^2} + x\sqrt{1-x^2}$ on $x \in [0,1]$. Take the derivative and set equal to zero and solve: $A' = -\frac{x}{\sqrt{2}}$ $\frac{x}{\sqrt{1-x^2}} - \frac{x^2}{\sqrt{1-x^2}}$ $\frac{x^2}{\sqrt{1-x^2}} + \sqrt{1-x^2} = 0 \rightarrow x = \frac{1}{2}$ $\frac{1}{2}$. Plug back into the area function to find the maximum area of $\frac{3\sqrt{3}}{4}$. **C**
- 21. Average value = $\frac{1}{12-0}\int_0^{12} \frac{\ln t}{t}$ t 12 $\frac{1}{c}$ and $\frac{1}{t}$ dt. Notice that $\frac{d}{dt}$ (ln t) = $\frac{1}{t}$ $\frac{1}{t}$. Integrate to get $\frac{1}{12}$ $\left(\frac{(\ln(t))^2}{2}\right)$ $\frac{1}{2}$ ₀ 12 $) =$ $\lim_{a \to 0} \frac{1}{12} \left(\frac{(\ln(t))^2}{2} \right)$ $\frac{1}{2}$ 12 $= \frac{1}{2}$ $\frac{1}{24}$ $\lim_{a \to 0} ((\ln 12^2)^2 - (\ln a)^2) = \frac{1}{12}$ $\frac{1}{12}((\ln 12^2)^2 - \infty)$. Diverges. **E**
- 22. Pappus' theorem tells us that the volume of a rotated 3D figure is the distance its centroid travels times the cross sectional area. ($V = 2\pi dA$) The area of this ellipse is $\pi ab = 2\pi$, and it's centroid is at $(0,0)$ due to symmetry. Thus, $V = \bigl(2\pi (3-0) \bigr) (2\pi) = 12\pi^2.$ **E**
- 23. We can find α by realizing that the sum of all probabilities for all valid distances is equal to 1: $1 = \int_0^\infty \alpha e^{-x/200} dx = \alpha(0 + 200) \rightarrow \alpha = 1/200$. Now we can find the probability that

X > 10 by computing 1 − $P(0 < X < 10) = 1 - \frac{1}{200} \int_0^{10} e^{-\frac{x}{200}} dx = 1 - \left(-e^{-\frac{1}{20}} + 1\right) =$ 0 $e^{-\frac{1}{20}}$. **A**

- 24. $EV = \int_0^\infty x f(x) dx = 2 \int_0^\infty x e^{-2x} dx$. Using integration by parts or tabular method, this integral evaluates to $-xe^{-2x}-\frac{e^{-2x}}{2}$ \overline{z} ₀ ∞ = 1/2. **A**
- 25. The derivative $\frac{dP}{dt} = kP(t)(600 15P(t))$ equals zero at $P = 40$. This means that the population will stop growing at 40 lions. **B**
- 26. Maximize the derivative $P' = kP(600 15P)$ which is a parabola. This means its maximum is at $P = -\frac{b}{2a}$ $\frac{b}{2a}$ = 20. Alternatively, you can take the derivative and set it equal to zero. Notice this is half of the carrying capacity. **C**
- 27. The solution to the differential equation is of the form $P(t) = \frac{40}{1+60}$ $\frac{40}{1+Ce^{kt}}$. Using $P(0) = 10$ and $P(1) = 15$, we find that $C = 3$ and $k = \ln \left(\frac{5}{6} \right)$ $(\frac{5}{9})$. We now plug in $t = 2$ and get $\frac{270}{13} \approx 20.7$ C
- 28. $\frac{dA}{dt} = kA \rightarrow A(t) = Ce^{kt}$. Plugging in $A(0)$ and $A(1)$ we get $C = 60$, $k = -\ln 3$. Now we solve 30 = $60e^{-\ln 3(t)} \to \log_3 2 = t$ **C**
- 29. We know from the previous question that $\frac{dA}{dt} = -\ln 3 A + r$. We want the drug to stay at a constant level after the initial dose: $\frac{dA}{dt} = 0 \to -\ln 3$ (100) + $r = 0 \to r = 100 \ln 3$. **D**
- 30. Newton's law of cooling gives us that $\frac{dT}{dt} = k(T-61) \rightarrow T = C e^{kt} + 61$. We are given that $T(0) = 101$ which means $C = 40$. We also know $T(t_1) = 81$, and $T(t_1 + 4) = 66$, giving us the two equations:

 $20 = 40e^{kt_1}$ and $5 = 40e^{k(t_1+4)} \rightarrow$

$$
-\ln 2 = kt_1 \text{ and } -3\ln 2 = kt_1 + 4k.
$$

Solving gives us = $-\frac{\ln 2}{2}$ $\frac{12}{2}$, $t_1 = 2$. If 6AM is $t = 2$, then $t = 0$ is at 4AM. **C**