Answers:

1.	В	7. D	13. C	19. A	25. B
2.	Α	8. B	14. B	20. C	26. C
3.	С	9. D	15. D	21. E	27. C
4.	Α	10. D	16. A	22. E	28. C
5.	С	11. B	17. B	23. A	29. D
6.	С	12. A	18. A	24. A	30. C

Solutions:

- 1. Taking the first and second derivatives we get the functions $v(t) = \sin t + t \cos t$ and $a(t) = 2 \cos t t \sin t$. $v\left(\frac{\pi}{2}\right) = 1$, $a\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$. This means Ankit is slowing down. **B**
- 2. We know $A = \frac{s^2 \sqrt{3}}{4}$ and P = 3s. Deriving, we get $\frac{dA}{dt} = \frac{s\sqrt{3}}{2} \frac{ds}{dt}$ and $\frac{dP}{dt} = 3 \frac{ds}{dt}$. We are given that the area and perimeter are changing at the same rate, so we can substitute $3 \frac{ds}{dt}$ for $\frac{dA}{dt}$. $3 \frac{ds}{dt} = \frac{s\sqrt{3}}{2} \frac{ds}{dt} \rightarrow s = 2\sqrt{3}$. A
- 3. In Newton's method, $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. For this function, we have $x_{n+1} = x_n \frac{x_n^3 + x_n}{3x_n^2 + 1}$. $x_1 = 1 - \frac{2}{4} = 1/2$. $x_2 = \frac{1}{2} - \frac{5/8}{7/4} = 1/7$. **C**
- 4. The ladder can be viewed as the hypotenuse of a right triangle while sliding down the building, so we have $x^2 + y^2 = 100$. After two seconds, the top will have moved 2ft down the building, giving us a leg of y = 8ft $\rightarrow x = 6$ ft. We derive the Pythagorean theorem to get $x \frac{dx}{dt} + y \frac{dy}{dt} = 0 \rightarrow 6 \frac{dx}{dt} + 8(-1) = 0 \rightarrow \frac{dx}{dt} = 4/3$. A
- 5. Profit is given by revenue cost. P = x(10,000 10x) (1,000 + 30(10,000 10x)). Simplify to get the parabola $P = -10x^2 + 10,300x - 301,000$. The maximum is at $x = -\frac{b}{2a} = \$515$ C
- 6. $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}} = \int_{0}^{1} \frac{1}{x+1} dx = \ln 2$. Thus, the answer is $1 \ln 2$. **C**
- 7. One could use the ratio test or recognize this as an infinite geometric series. Both yield $|\ln(2x)| < 1 \rightarrow -1 < \ln(2x) < 1 \rightarrow \frac{1}{e} < 2x < e \rightarrow \frac{1}{2e} < x < \frac{e}{2}$. **D**

- 8. Notice that this value is in the desired range. We use the formula for an infinite geometric series: $\sum_{n=1}^{\infty} \left(\ln \left(\frac{2\sqrt{e}}{2} \right) \right)^n = \frac{\ln \sqrt{e}}{1 \ln \sqrt{e}} = 1$ B
- 9. For these parametric equations, we have $\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = 2t(-e^t)$, and $\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right)\frac{dt}{dx} = \left(\frac{d}{dt}(-2te^t)\right)(-e^t) = 2e^{2t}(t+1)$. At t = 2, this is $6e^4$. **D**
- 10. For the purposes of this problem, let's treat the Earth as a sphere of radius 2. This means that the denominator of our fraction is $\frac{4}{3}\pi r^3 = \frac{32\pi}{3}$. Using trig, we see that the 60th parallel cuts this sphere $\sqrt{3}$ above/below from the center. We can find the volume of one of these regions by rotating a portion of the first quadrant quarter circle $y = \sqrt{4 x^2}$ about the x axis using the disk method: $V = 2\pi \int_{\sqrt{3}}^{2} (\sqrt{4 x^2})^2 dx = 2\pi \left(4x \frac{x^3}{3}\right)_{\sqrt{3}}^2 = 2\pi * \frac{16 9\sqrt{3}}{3}$. Thus, our fraction is $\frac{2\pi * \frac{16 9\sqrt{3}}{3}}{\frac{32\pi}{3}} = \frac{16 9\sqrt{3}}{16}$. **D**
- 11. We are given Dr. Evil starts at rest, so $v_D(0) = 0$. We can treat P as the reference, so $x_D(0) = 0$. Thus, we integrate Dr. Evil's acceleration twice to get $x_D(t) = \frac{3}{4}t^2$. Austin runs at a constant speed but starts six seconds later, so $v_A(t) = v(t-6)$ where v is the speed at which Austin runs. We are trying to find the minimum v for which they meet, or in other words, for which $\frac{3}{4}t^2 = v(t-6) \rightarrow 3t^2 4vt + 24v = 0$ has a solution. The slowest Austin can run is when he only catches Dr. Evil once (versus passing then being passed). This equation has one solution when its discriminant is zero: $0 = b^2 4ac = 16v^2 4(24)(3)v = 0 \rightarrow v^2 18v = 0 \rightarrow v = 18, v = 0$. Only the positive answer makes sense in the context of this question. **B**
- 12. If a projectile is fired at velocity v and angle θ above the horizontal, the initial y component of the velocity is $v \sin \theta$ and the initial x component is $v \cos \theta$. There is no acceleration in the x direction, so $x(t) = vt \cos \theta$. Integrating the constant acceleration of gravity, we get $y(t) = vt \sin \theta 5t^2$. The distance between Austin and the projectile is $D(t) = \sqrt{(x(t))^2 + (y(t))^2} = \sqrt{v^2 t^2 10v t^3 \sin \theta + 25t^4}$ using the Pythagorean identity. This distance will never decrease if its derivative is never negative. We can ignore the square root for this part since it is always nonnegative. $D'(t) = t(100t^2 (30v \sin \theta)t^2 + 2v^2)$. Since t is never negative, this function is nonnegative if the parabola $100t^2 (30v \sin \theta)t^2 + 2v^2$ never crosses the x axis. This means its discriminant is less than or equal to zero: $900v^2 \sin^2 \theta 4(100)(2v^2) \le 0 \rightarrow \sin^2 \theta \le \frac{8}{9} \rightarrow \sin \theta \le \frac{2\sqrt{2}}{3}$. A
- 13. Initial vertical velocity is $120 \sin 1 \approx 120 \left(1 \frac{1}{3!} + \frac{1}{5!}\right) = 120 20 + 1 = 101 \text{ C}$

14. The amount of coolant left at time t is C(t) = C - rt. We are given v(t) = k(C - rt). This tells us that v = 0 when t = C/r. Integrate velocity to find distance traveled (x(0) = 0 since we are only concerned distance while coolant is leaking): $x(t) = kCt - \frac{1}{2}krt^2$.

Plugging in t = C/r, we get $\frac{kC^2}{r} - \frac{1}{2} * \frac{kC^2}{r} = \frac{kC^2}{2r}$. B

- 15. If *n* is odd, the flower has *n* petals, and if *n* is even, the flower has 2*n* petals. This means, a flower can have any odd number of petals, but only an even number of petals that is a multiple of 4. Thus, 18 is an invalid number of petals. **D**
- 16. The cycloid has one arch between 0 and 2π , so the total perimeter is the curve length between two points plus the segment along the x axis with length 2π . The curve length is $\int_{0}^{2\pi} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = 2 \int_{0}^{2\pi} \sqrt{2 2\cos t} dt = -8\cos\frac{\theta}{2}\Big|_{0}^{2\pi} = 16$. The total perimeter is $16 + 4\pi$. A

17.
$$P(100) \approx P(125) - 25(P'(125)) = 75 - 25(\frac{2}{5}) = 65.$$
 B

- 18. The axis of symmetry is at x = 0, so $\bar{x} = 0$. $\bar{y} = \frac{1}{2A} \int_{-2}^{2} (16 x^4) dx = \frac{3}{64} \left(16x \frac{x^5}{5} \Big|_{-2}^{2} \right) = \frac{3}{64} \left(\frac{4(64)}{5} \right) = \frac{12}{5}$. A
- 19. $C'(50) = \frac{2}{50} = \frac{1}{25}$. **A**
- 20. To achieve maximum area, one base must be along the diameter with a vertex at each side. This base will have length 2, and other base will have length 2x. The height of the trapezoid, given by the y coordinate of the semicircle is $\sqrt{1-x^2}$. Thus, we are maximizing the function $A = \frac{1}{2}(2+2x)\sqrt{1-x^2} = \sqrt{1-x^2} + x\sqrt{1-x^2}$ on $x \in [0,1]$. Take the derivative and set equal to zero and solve: $A' = -\frac{x}{\sqrt{1-x^2}} - \frac{x^2}{\sqrt{1-x^2}} + \sqrt{1-x^2} = 0 \rightarrow x = \frac{1}{2}$. Plug back into the area function to find the maximum area of $\frac{3\sqrt{3}}{4}$. **C**
- 21. Average value $=\frac{1}{12-0}\int_0^{12}\frac{\ln t}{t}dt$. Notice that $\frac{d}{dt}(\ln t) = \frac{1}{t}$. Integrate to get $\frac{1}{12}\left(\frac{(\ln(t))^2}{2}\Big|_0^{12}\right) = \lim_{a\to 0}\frac{1}{12}\left(\frac{(\ln(t))^2}{2}\Big|_a^{12}\right) = \frac{1}{24}\lim_{a\to 0}((\ln 12^2)^2 (\ln a)^2) = \frac{1}{12}((\ln 12^2)^2 \infty)$. Diverges. **E**
- 22. Pappus' theorem tells us that the volume of a rotated 3D figure is the distance its centroid travels times the cross sectional area. $(V = 2\pi dA)$ The area of this ellipse is $\pi ab = 2\pi$, and it's centroid is at (0,0) due to symmetry. Thus, $V = (2\pi(3-0))(2\pi) = 12\pi^2$. **E**
- 23. We can find α by realizing that the sum of all probabilities for all valid distances is equal to 1: $1 = \int_0^\infty \alpha e^{-x/200} dx = \alpha(0 + 200) \rightarrow \alpha = 1/200$. Now we can find the probability that

X > 10 by computing $1 - P(0 < X < 10) = 1 - \frac{1}{200} \int_0^{10} e^{-\frac{X}{200}} dx = 1 - \left(-e^{-\frac{1}{20}} + 1\right) = e^{-\frac{1}{20}}$. A

- 24. $EV = \int_0^\infty x f(x) dx = 2 \int_0^\infty x e^{-2x} dx$. Using integration by parts or tabular method, this integral evaluates to $-xe^{-2x} \frac{e^{-2x}}{2} \Big|_0^\infty = 1/2$. A
- 25. The derivative $\frac{dP}{dt} = kP(t)(600 15P(t))$ equals zero at P = 40. This means that the population will stop growing at 40 lions. **B**
- 26. Maximize the derivative P' = kP(600 15P) which is a parabola. This means its maximum is at $P = -\frac{b}{2a} = 20$. Alternatively, you can take the derivative and set it equal to zero. Notice this is half of the carrying capacity. **C**
- 27. The solution to the differential equation is of the form $P(t) = \frac{40}{1+Ce^{kt}}$. Using P(0) = 10 and P(1) = 15, we find that C = 3 and $k = \ln\left(\frac{5}{9}\right)$. We now plug in t = 2 and get $\frac{270}{13} \approx 20.7$ C
- 28. $\frac{dA}{dt} = kA \rightarrow A(t) = Ce^{kt}$. Plugging in A(0) and A(1) we get C = 60, $k = -\ln 3$. Now we solve $30 = 60e^{-\ln 3(t)} \rightarrow \log_3 2 = t$ **C**
- 29. We know from the previous question that $\frac{dA}{dt} = -\ln 3A + r$. We want the drug to stay at a constant level after the initial dose: $\frac{dA}{dt} = 0 \rightarrow -\ln 3 (100) + r = 0 \rightarrow r = 100 \ln 3$. **D**
- 30. Newton's law of cooling gives us that $\frac{dT}{dt} = k(T 61) \rightarrow T = Ce^{kt} + 61$. We are given that T(0) = 101 which means C = 40. We also know $T(t_1) = 81$, and $T(t_1 + 4) = 66$, giving us the two equations:

 $20 = 40e^{kt_1}$ and $5 = 40e^{k(t_1+4)} \rightarrow$

$$-\ln 2 = kt_1$$
 and $-3\ln 2 = kt_1 + 4k$.

Solving gives us $= -\frac{\ln 2}{2}$, $t_1 = 2$. If 6AM is t = 2, then t = 0 is at 4AM. **C**