#0 Mu Ciphering MA© National Convention 2015

Find the equation of the tangent line to the graph y = sinx + x at the point (0, 0), written in slope-intercept form.

#0 Mu Ciphering MA© National Convention 2015

Find the equation of the tangent line to the graph y = sinx + x at the point (0, 0), written in slope-intercept form.

#0 Mu Ciphering MA© National Convention 2015

Find the equation of the tangent line to the graph y = sinx + x at the point (0, 0), written in slope-intercept form.

#0 Mu Ciphering MA© National Convention 2015

Find the equation of the tangent line to the graph y = sinx + x at the point (0, 0), written in slope-intercept form.

#1 Mu Ciphering MA© National Convention 2015

Water is poured into a conical paper cup at the rate of 2/3 cubic inches per second. If the cup is 6 inches tall and the top of the cup has a radius of 2 inches, how fast does the water level rise in inches per second when the water is 4 inches deep?

#1 Mu Ciphering MA© National Convention 2015

Water is poured into a conical paper cup at the rate of 2/3 cubic inches per second. If the cup is 6 inches tall and the top of the cup has a radius of 2 inches, how fast does the water level rise in inches per second when the water is 4 inches deep?

#1 Mu Ciphering MA© National Convention 2015

Water is poured into a conical paper cup at the rate of 2/3 cubic inches per second. If the cup is 6 inches tall and the top of the cup has a radius of 2 inches, how fast does the water level rise in inches per second when the water is 4 inches deep?

#1 Mu Ciphering MA© National Convention 2015

Water is poured into a conical paper cup at the rate of 2/3 cubic inches per second. If the cup is 6 inches tall and the top of the cup has a radius of 2 inches, how fast does the water level rise in inches per second when the water is 4 inches deep?

#2 Mu Ciphering MA© National Convention 2015

Find *k* such that the line y=x+4 is tangent to the graph of the function $f(x)=k\sqrt{x}$.

#2 Mu Ciphering MA© National Convention 2015

Find *k* such that the line y=x+4 is tangent to the graph of the function $f(x)=k\sqrt{x}$.

#2 Mu Ciphering MA© National Convention 2015

Find *k* such that the line y=x+4 is tangent to the graph of the function $f(x)=k\sqrt{x}$.

#2 Mu Ciphering MA© National Convention 2015

Find *k* such that the line y=x+4 is tangent to the graph of the function $f(x)=k\sqrt{x}$.

#3 Mu Ciphering MA© National Convention 2015

Find the area enclosed by the inner loop of $r = 2 - 4\cos\theta$.

#3 Mu Ciphering MA© National Convention 2015

Find the area enclosed by the inner loop of $r = 2 - 4\cos\theta$.

#3 Mu Ciphering MA© National Convention 2015

Find the area enclosed by the inner loop of $r = 2 - 4\cos\theta$.

#3 Mu Ciphering MA© National Convention 2015

Find the area enclosed by the inner loop of $r = 2 - 4\cos\theta$.

#4 Mu Ciphering MA© National Convention 2015

A printed page has 2.5 cm margins at the top and bottom and 2 cm margins at the sides. If the area of the printed portion is to be 250 square cm, what should the dimensions of the page be to use the least paper?

#4 Mu Ciphering MA© National Convention 2015

A printed page has 2.5 cm margins at the top and bottom and 2 cm margins at the sides. If the area of the printed portion is to be 250 square cm, what should the dimensions of the page be to use the least paper?

#4 Mu Ciphering MA© National Convention 2015

A printed page has 2.5 cm margins at the top and bottom and 2 cm margins at the sides. If the area of the printed portion is to be 250 square cm, what should the dimensions of the page be to use the least paper?

#4 Mu Ciphering MA© National Convention 2015

A printed page has 2.5 cm margins at the top and bottom and 2 cm margins at the sides. If the area of the printed portion is to be 250 square cm, what should the dimensions of the page be to use the least paper?

#5 Mu Ciphering MA© National Convention 2015

A region is bounded in quadrant I by the **x**-axis, y = -4x+12 and $y = x^2$. What is the resulting volume if the region is rotated about the y-axis?

#5 Mu Ciphering MA© National Convention 2015

A region is bounded in quadrant I by the **x**-axis, y = -4x+12 and $y = x^2$. What is the resulting volume if the region is rotated about the y-axis?

#5 Mu Ciphering MA© National Convention 2015

A region is bounded in quadrant I by the **x**-axis, y = -4x+12 and $y = x^2$. What is the resulting volume if the region is rotated about the y-axis?

#5 Mu Ciphering MA© National Convention 2015

A region is bounded in quadrant I by the **x**-axis, y = -4x+12 and $y = x^2$. What is the resulting volume if the region is rotated about the y-axis?

#6 Mu Ciphering MA© National Convention 2015

If the angle of elevation of the sun is 45 degrees

and is decreasing at $\frac{1}{8}$ rad/hour, how fast, in

meters per hour, is the shadow cast on the ground by a pole 50m tall lengthening?

#6 Mu Ciphering MA© National Convention 2015

If the angle of elevation of the sun is 45 degrees

and is decreasing at $\frac{1}{8}$ rad/hour, how fast, in

meters per hour, is the shadow cast on the ground by a pole 50m tall lengthening?

#6 Mu Ciphering MA© National Convention 2015

If the angle of elevation of the sun is 45 degrees and is decreasing at $\frac{1}{8}$ rad/hour, how fast, in meters per hour, is the shadow cast on the ground by a pole 50m tall lengthening?

#6 Mu Ciphering MA© National Convention 2015

If the angle of elevation of the sun is 45 degrees and is decreasing at $\frac{1}{8}$ rad/hour, how fast, in meters per hour, is the shadow cast on the ground by a pole 50m tall lengthening?

#7 Mu Ciphering MAO National Convention 2015

Find the volume of the solid having as its base the region bounded by the ellipse with equation

 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and semicircular cross-sections

perpendicular to the y-axis.

#7 Mu Ciphering MA National Convention 2015

Find the volume of the solid having as its base the region bounded by the ellipse with equation

 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and semicircular cross-sections

perpendicular to the y-axis.

#7 Mu Ciphering MAO National Convention 2015

Find the volume of the solid having as its base the region bounded by the ellipse with equation

 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and semicircular cross-sections perpendicular to the y-axis.

#7 Mu Ciphering MA_O National Convention 2015

Find the volume of the solid having as its base the region bounded by the ellipse with equation

 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and semicircular cross-sections

perpendicular to the y-axis.

#8 Mu Ciphering MA© National Convention 2015

Evaluate:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{18}{n} - \frac{3i}{n^2} \right)$$

#8 Mu Ciphering MA© National Convention 2015

F 1 .	$\sum_{n=1}^{n} (18)$	3i
Evaluate:	$\lim_{n\to\infty}\sum_{i=1}^{\infty}\left(\frac{n}{n}\right)^{-1}$	$\left(\frac{1}{n^2}\right)$

#8 Mu Ciphering MA© National Convention 2015

Evaluate:

$\lim_{n\to\infty}\sum_{i=1}^n$	18	3i
	n	$\overline{n^2}$

#8 Mu Ciphering MA© National Convention 2015

Evaluate:
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{18}{n} - \frac{3i}{n^2} \right)$$

#9 Mu Ciphering

MA© National Convention 2015 Determine the area of the region bounded by the line

$$y = \frac{1}{2}x$$
 and the parabola $y^2 = 8 - x$.

#9 Mu Ciphering

MAO National Convention 2015 Determine the area of the region bounded by the line

$$y = \frac{1}{2}x$$
 and the parabola $y^2 = 8 - x$.

#9 Mu Ciphering MA_O National Convention 2015

Determine the area of the region bounded by the line

$$y = \frac{1}{2}x$$
 and the parabola $y^2 = 8 - x$.

#9 Mu Ciphering MA_O National Convention 2015

Determine the area of the region bounded by the line $y = \frac{1}{2}x$ and the parabola $y^2 = 8 - x$.

#10 Mu Ciphering MA© Nation<u>al Convention 2015</u>

#10 Mu Ciphering MA© National Convention 2015

For what value of k does
$$\int_{k}^{1} \frac{1}{\sqrt{y} \left(1 + \sqrt{y}\right)^{2}} dy = \frac{3}{4}?$$

#10 Mu Ciphering MA© National Convention 2015

For what value of k does
$$\int_{k}^{1} \frac{1}{\sqrt{y} \left(1 + \sqrt{y}\right)^{2}} dy = \frac{3}{4}?$$

#10 Mu Ciphering MA© National Convention 2015

For what value of k does
$$\int_{k}^{1} \frac{1}{\sqrt{y} \left(1 + \sqrt{y}\right)^{2}} dy = \frac{3}{4}?$$

#11 Mu Ciphering MA© National Convention 2015

Find the value of A if
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n \cdot 3^n} \right) = \ln A$$
.

#11 Mu Ciphering MA© National Convention 2015

Find the value of A if
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n \cdot 3^n} \right) = \ln A$$
.

#11 Mu Ciphering MA© National Convention 2015

#11 Mu Ciphering MA© National Convention 2015

Find the value of A if
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n \cdot 3^n} \right) = \ln A$$
.

#12 Mu Ciphering MA© National Convention 2015

If $y = x^{x^{x}}$, the value of $\frac{dy}{dx}\Big|_{x=2}$ can be written as $A + B \ln 2 + C(\ln 2)^{2}$, where *A*, *B*, and *C* are

positive integers. Find the value of A + B + C.

#12 Mu Ciphering MA© National Convention 2015

If $y = x^{x^x}$, the value of $\frac{dy}{dx}\Big|_{x=2}$ can be written as $A + B \ln 2 + C(\ln 2)^2$, where *A*, *B*, and *C* are positive integers. Find the value of A + B + C.

#12 Mu Ciphering MA© National Convention 2015

If $y = x^{x^x}$, the value of $\frac{dy}{dx}\Big|_{x=2}$ can be written as $A + B \ln 2 + C(\ln 2)^2$, where *A*, *B*, and *C* are positive integers. Find the value of A + B + C.

#12 Mu Ciphering MA© National Convention 2015

If $y = x^{x^{x}}$, the value of $\frac{dy}{dx}\Big|_{x=2}$ can be written as $A + B \ln 2 + C(\ln 2)^2$, where *A*, *B*, and *C* are positive integers. Find the value of A + B + C.