ANSWERS

- 1. A
- 2. C
- 3. A 4. B
- 5. D
- 6. D
- 7. D
- 8. A
- 9. B
- 10. D
- 11. E
- 12. B
- 13. B
- 14. C
- 15. C
- 16. A
- 17. C
- 18. D
- 19. D 20. E
- 21. A
- 22. C
- 23. A
- 24. B
- 25. C
- 26. E
- 27. D
- 28. A
- 29. D
- 30. A

SOLUTIONS

1. Separating variables gives $\sec^2 y \, dy = \cos x \, dx$, and then integrating yields $\tan y = \sin x + C$. The initial value implies $C = 1$ so the solution is $\tan y = \sin x + 1$.

2. Separating variables gives $y \, dy = dx / x$, and then integrating and multiplying by 2 yields $y^2 = 2\ln x + C$. The initial value implies $C = 1$ so the solution is $y^2 = 2\ln x + 1$. Since the initial value is positive, when we take the square root we reject the negative root to obtain a final answer of $y = \sqrt{2 \ln x + 1}$.

3. Factor out *P* and $1/2000$ to write $P\ell = P(100 - P)/2000$. Note that this differential equation is logistic with carrying capacity 100. Logistic populations grow fastest at half the carrying capacity; hence, $P = 50$.

4. The order of a differential equation refers to its highest derivative; this is 3.

5. We do not solve this equation; rather, we consider what it says. We want a function *y* with the property that the second derivative and *y* are equal. Checking the three possible choices, we find that only II and III have this property.

6. *Solution 1.* Writing $y = xy \ell + \frac{1}{x}$ *y*¢ makes the possible solutions easier to verify.

For (I), we have $y^{\ell} = 1$ which works. For (II), we have $y^{\ell} = 1/3$ which also works. For (III) we have $y \in (1/\sqrt{x})$; plugging this into the right-hand side yields $x/\sqrt{x} + \sqrt{x} = \sqrt{x} + \sqrt{x} = 2\sqrt{x} = y$, so this works also. By the previous work, we see that (IV) works. Hence, they all are solutions.

Solution 2. Note that the equation $y = xy\ell + 1/y\ell$ is of the form $y = xy\ell + g(y\ell)$, where $g(y\ell)$ is a function only in *y*¢ . Such an equation is a Clairaut equation; solutions are given by replacing y^{t} with *C*. So the solutions are of the form $y = Cx + 1/C$, which both (I) and (II) are. The envelope of the family of lines $y = Cx + 1/C$ is also a solution; it's envelope is $y^2 = 2x$, and this includes (III) and (IV).

7. Let the height of the bridge be *B*. Then the stone's position *H* is $H(t) = -16t^2 + B$ since the initial velocity is zero. Setting $H(3) = -144 + B = 0$ gives $B = 144$ feet.

8. Note that
$$
\frac{d}{dx}(\sqrt{2x}) = \frac{1}{\sqrt{2x}} = \frac{1}{y}
$$
. Thus the answer is A.

9. Using a step size of 0.1 starting at $t = 0$ and going to $t = 3$ means that we must, on the 10th step, use $t = 1$, which makes the slope undefined.

10. Separating variables results in $\cot y \, dy = -\tan x \, dx$. Integrating gives $\ln|\sin y| = \ln|\cos x| + C$. Exponentiating both sides yields $\sin y = C \cos x$.

11. Let the initial population of the bacteria be *B*. Malthus' Law states that $P(t) = Be^{kt}$, for constant *k*. With the value $P(2) = 3B$, we find that $3 = e^{2k}$, or $k = (\ln 3)/2$. Thus the equation for the bacteria is $P(t) = Be^{t(\ln 3)/2} = B \times 3^{t/2}$. To find the time at which the population is 100 times *B*, we set $100 = 3^{t/2}$. Now, since $3^4 < 100 < 3^5$, we must have $4 < t/2 < 5$, or $8 < t < 10$. Hence, the population is 100 times greater sometime between 8 PM and 10 PM.

12. When $y = 5$, we have $dy/dx = 0$. So the slope field will show a horizontal asymptote at $y = 5$. (The solution to the differential equation is $y = 5 - Ce^{-x}$, which does indeed have a horizontal asymptote at $y = 5$.)

13. *Solution 1*. For (I), we have $y^{\ell} = 3$ which works. For (II), we have $y^{\ell} = 75$ which does not work: $75x - 2(25)^{3/2} = 75x - 250$, not $75x - 50$. For (III) we have $y\ell = 768$ which works: 768*x* - 2(256)^{3/2} = 768*x* - 2(16)³ = 768*x* - 8192. Finally, for (IV) we have $y^{\ell} = 3x^2$ which works: $x \times 3x^2 - 2(x^2)^{3/2} = 3x^3 - 2x^3 = x^3.$

Solution 2. Note that the differential equation is of the form $y = xy\hat{i} + g(y\hat{j})$, where $g(y\hat{i})$ is a function only in y^{ℓ} . So this is also a Clairaut equation; solutions are given by replacing y^{ℓ} with *C*. So the solutions are of the form $y = Cx + 2(C/3)^{3/2}$, which both (I) and (III) are. The envelope of the family of lines $y = Cx + 2(C/3)^{3/2}$ is also a solution; the envelope is $y = x^3$.

14. The exponential decay of 10 grams of thorium is given by $T(t) = 10e^{kt}$ for constant *k*. *T*(1) = 8 implies $k = \ln(4/5)$ so that $T(t) = 10e^{t\ln(4/5)} = 10(4/5)^t$. Therefore $T(3) = 10(4/5)^3 = 128/25$. The closest integer to $128/25$ is 5.

15. By the Fundamental Theorem of Calculus, $y(3) - y(1) = \hat{0}_0 \left[2x - 3 \right]$ $\int_0^3 |2x-3| dx$. The definite integral is computed by using geometry; the value is 4.5. Thus $y(3) = y(0) + \hat{\theta}_0^2 [2x - 3]$ $\int_0^3 |2x-3| dx = 5 + 4.5 = 9.5.$

16. Set $y^{\text{c}} = 1$ and solve $1 = x - y$ to get $y = x - 1$.

17. The left-hand side is the implicit derivative of x^2y , so we may write

$$
\frac{d}{dx}(x^2y) = 1
$$

$$
\int \frac{d}{dx}(x^2y) dx = \int dx
$$

$$
x^2y = x + C
$$

$$
y = \frac{1}{x} + \frac{C}{x^2}
$$

.

The initial value implies $\frac{1}{2}$ 2 $+\frac{C}{A}$ $\frac{C}{4} = 2(1+C)$ so that $C = -\frac{6}{7}$ 7 . Hence, $y = \frac{1}{x}$ *x* $-\frac{6}{5}$ $\frac{6}{7x^2}$. Finally, $(3) = \frac{1}{2} - \frac{6}{62} = \frac{5}{21}.$ $\frac{1}{3} - \frac{1}{63} = \frac{1}{21}$ $y(3) = \frac{1}{2} - \frac{6}{62} = \frac{5}{2}$

18. Once we separate variables and attempt to integrate, we are faced with $\partial \sin \sqrt{x} dx$, for which we must use a substitution. Let $t = \sqrt{x}$ so that $t^2 = x$ and $2t dt = dx$. Then the integral becomes $\partial^2 u \sin t \, dt$, which must be evaluated using parts: $u = 2t$ and $dv = \sin t \, dt$, so then $du = 2 dt$ and $v = -\cos t$. Finally we have

 $y = \hat{y} \sin \sqrt{x} dx = \hat{y} 2t \sin t dt = -2t \cos t + 2 \sin t + C = -2\sqrt{x} \cos \sqrt{x} + 2 \sin \sqrt{x} + C$. At the initial value, we get $C = -2$ so that $y(\rho^2) = 2\rho - 2$.

19. Let's take derivatives of $y = C_1 x + C_2 e^x$. We get $y \in C_1 + C_2 e^x$ and $y \in C_2 e^x$. Substituting y ^{$\&$} for $C_2 e^x$ in the first derivative gives us $y \in C_1 + y \mathbb{C}$, or $C_1 = y \in C_2$. Substituting this into the original equation gives $y = (y\ell - y\ell)x + y\ell x = xy\ell + (1 - x)y\ell x$.

20. Let $S(t)$ be the amount of salt, in pounds, in the tank at time t. Salt enters the tank at 2 $\text{ls/gal} \times 5 \text{ gal/min} = 10 \text{ lbs/min}$. Since the amount of brine in the tank at time t is $100 + 5t - 4t = 100 + t$, salt leaves the tank at a rate of $\frac{S}{100}$ 100 + *t* $\frac{4S}{\text{abs/gal} \times 4 \text{ gal/min}} = \frac{4S}{100}$ 100 + *t* lbs/min. So the rate of change of $S(t)$ in pounds per minute is given by $\frac{dS}{dt}$ *dt* $= 10 - \frac{4S}{100}$ 100 + *t* . To solve this differential equation, we write it as $\frac{dS}{dt}$ *dt* $+\frac{4S}{100}$ 100 + *t* = 10 and use an integrating factor. That integrating factor is

$$
\exp\biggl(\int \frac{4}{100+t} \, dt\biggr) = \exp\biggl(4\ln(100+t)\biggr) = (100+t)^4.
$$

Then the differential equation is

$$
(100 + t)^4 \frac{dS}{dt} + 4(100 + t)^3 S = 10(100 + t)^4.
$$

The left-hand side is now the derivative of $(100 + t)^4 S$, so upon integrating we get

 $(100 + t)^4$ S = 2(100 + *t*)⁵ + *C*. Solving for *S* yields $S(t) = 2(100 + t) + C(100 + t)^{-4}$. Using the

initial value $S(0) = 50$ gives $C = -150 \times 100^4$. Finally, we have the equation of the amount of salt:

$$
S(t) = 2(100 + t) - 150\left(\frac{100}{100 + t}\right)^4.
$$

But the question asks for the concentration of salt; this is $S(t)$ divided by $100 + t$:

concentration of salt =
$$
\frac{S(t)}{100 + t} = 2 - \frac{150 \times 100^4}{(100 + t)^5}.
$$

So the concentration of salt 100 minutes after the process begins is
\n
$$
\frac{S(100)}{100+t} = 2 - \frac{150 \cdot 100^4}{200^5} = 2 - \frac{3}{2^6} = \frac{2^7 - 3}{2^6} = \frac{125}{64}.
$$

21. *Solution 1*. We write the differential equation as $y\ell - y/x = -2/x^2$ and find that the integrating factor is $\exp(\mathbf{\hat{j}} - 1/x) = \exp(-\ln x) = 1/x$. Multiplying the equation by $1/x$ gives the left-hand side as the derivative of y/x and the right-hand side as $-2/x^3$. Integrating both sides results in $y/x = 1/x^2 + C$, or $y = 1/x + Cx$. The initial value implies $C = 6$, and hence $y = 1/x + 6x$. Therefore, $y(0.5) = 2 + 3 = 5$.

Solution 2. Differentiate the equation to get $y = y \pm xy \pm 2/x^2$. Then $y \pm 2/x^3$. Integrating this gives $y^{\ell} = -1/x^2 + C$. Now substitute this into the given differential equation:

$$
y = x \left(-\frac{1}{x^2} + C \right) + \frac{2}{x} = -\frac{1}{x} + Cx + \frac{2}{x} = \frac{1}{x} + Cx.
$$

Now the initial condition and the answer follow as in Solution 1.

22. Differentiate the family of curves to obtain $y + xy = C$. Then the differential equation for this family is $xy = (y + xy)(x - 1) = xy + x^2y - 1$, or $y(1 + x^2) = 1/x^2$. The orthogonal slope is therefore $-x^2$. This gives a new differential equation $y = -x^2$ which is easily solved to give $y = -x^3/3 + K$, or $3y + x^3 = K$.

.

23. Note that $2y \ell y \ell$ is the derivative of $(y \ell)^2$ so integrating the differential equation yields $(y^{\alpha})^2 = x + C$, or $y^{\alpha} = \sqrt{x + C}$. The initial value of the derivative of *y* implies $C = 3$. Now integrating $y = \sqrt{x+3}$ results in $y = \frac{2}{3}$ 3 $(x+3)^{3/2}$ + *K*. The initial value of *y* implies $K = -1/3$. Thus, $y = \frac{2}{3}$ 3 $(x+3)^{3/2}$ - $\frac{1}{2}$ 3 .

24. According to Sir Isaac Newton, if *T* is the temperature and *t* is time, then $dT / dt = -k(T - 10)$, where *k* is a constant. Separating variables and integrating gives $\ln |T - 10| = -kt + B$. Solving this for *T* results in $T(t) = 10 + Ce^{-kt}$. The initial value $T(0) = 70$ gives $C = 60$, so that $T(t) = 10 + 60e^{-kt}$. The value $T(3) = 25$ gives $k = (\ln 4)/3$. Therefore

$$
T(t) = 10 + 60 \exp\left(-\frac{1}{3}t\ln 4\right) = 10 + 60 \exp\left(\ln 4^{-t/3}\right) = 10 + 60 \cdot 4^{-t/3}
$$

Finally, $T(9) = 10 + 60 \times 4^{-3} = 10 + 60 / 64 \ge 11$.

25. Separating the variables gives $dr / r = \sec q \, dq$, and integrating gives $\ln r = \ln |\sec q + \tan q| + B$. Thus, $r = C |\sec \theta + \tan \theta|$, and the initial value implies $C = 5$. Hence, Thus, $r = C \left| \sec \theta + \tan \theta \right|$, and the initial value i
 $\left| \frac{5\pi}{4} \right| = 5 \left| \sec \frac{5\pi}{4} + \tan \frac{5\pi}{4} \right| = 5 \left| -\sqrt{2} + 1 \right| = 5 \left(\sqrt{2} - 1 \right).$ *B*. Thus, $r = C |\sec \theta + \tan \theta|$, and the initial value impli
 $r \left(\frac{5\pi}{4} \right) = 5 |\sec \frac{5\pi}{4} + \tan \frac{5\pi}{4}| = 5 |-\sqrt{2} + 1| = 5 (\sqrt{2} - 1).$

26. Let the constant deceleration be $-a$. Let $t = 0$ be the start of the braking time, and let $t = s$ be the stop time. Then $v(0) = 88$, $v(s) = 0$, $p(0) = 0$, and $p(s) = 242$. Now since $v(t) = -at + C$, the initial value of the velocity implies $v(t) = -at + 88$. Then $p(t) = -at^2/2 + 88t + K$, and the initial value of the position implies $p(t) = -at^2/2 + 88t$. At the stop time, we have $v(s) = -as + 88 = 0$, so that $s = 88 / a$. Finally, at the stop time, we have

$$
p(s) = 242 = -\frac{1}{2}as^2 + 88s = -\frac{1}{2}a\left(\frac{88}{a}\right)^2 + 88\cdot\frac{88}{a} = -\frac{88^2}{2a} + \frac{88^2}{a} = \frac{88^2}{2a}.
$$

Solving for *a*, we see that the constant deceleration is 16 feet per second per second.

27. A differential equation of the form $\frac{dy}{dx} = -\frac{y-1}{x-1}$ dy $y-k$ $dx \t x-h$ defines a hyperbola with center (*h*,*k*). However, since we are told that the solution passes through $(4, 6)$ – which is the center! – this differential equation defines a degenerate hyperbola. That is, this defines the pair of lines $x = 4$

and $y = 6$. The solution to the differential equation is therefore $(x - 4)(y - 6) = 0$, and all the statements are true.

28. First, note that $y = 2$ is a solution. Now, the characteristic equation is $m^2 + 5m + 6 = 0$ whose solutions are $m = -2$ and $m = -3$. Thus the solution to the differential equation is of the form $y = C_1 e^{-2x} + C_2 e^{-3x} + 2$. The values $y(0) = 4$ and $y(0) = 0$ imply that we have the system of equations below.

$$
\begin{cases} C_1 + C_2 = 4 \\ -2C_1 - 3C_2 = 0 \end{cases}
$$
 which implies $C_1 = 6, C_2 = -4$.

Hence, $y = 6e^{-2x} - 4e^{-3x} + 2$, and $y(-\ln 5) = 6 \times 25 - 4 \times 125 + 2 = -348$.

29. Note that the differential equation is of the form $y = xy \ell + g(y \ell)$, where $g(y \ell)$ is a function only in y^{ℓ} . Such an equation is a Clairaut equation; solutions are given by replacing y^{ℓ} with *C*. So the solutions are of the form $y = Cx + C^2 + C$. The value $y(1) = -1$ implies $-1 = 2C + C^2$ from which $C = -1$. Hence, $y = -x + (-1)^2 + (-1) = -x$, and $y(-4) = 4$.

30. To find the Taylor series solution, we first find successive derivatives of *y* using the given differential equation. The initial value is used to compute values of these derivatives. The first two derivatives are $y^{\zeta} = y^2 - xy$ and $y^{\zeta} = 2yy^{\zeta} - y - xy^{\zeta}$. The values of these derivatives at (0, 2) are $y(0) = 4 - 0 = 4$ and $y(0) = 16 - 2 - 0 = 14$. Therefore the first three nonzero terms of the Taylor series solution are al equation is of the form $y = xy^{\ell} + g(y^{\ell})$, where $g(y^{\ell})$

on is a Clairaut equation; solutions are given by replaciiorm $y = Cx + C^2 + C$. The value $y(1) = -1$ implies -1 :
 $y = -x + (-1)^2 + (-1) = -x$, and $y(-4) = 4$.

so solution,

re
\n
$$
y = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 = 2 + 4x + 7x^2.
$$