Mu Everything Encompassing e Solutions MAO National Convention 2015

Answers:

Solutions:

- 1. e is usually referred to as Euler's number, he chose the symbol e . **B**
- 2. The discovery of e is credited to Bernoulli while attempting to model continuously compounded interest. **D**
- 3. All are equal to e . A and B are common limit definitions, C is the Maclaurin series representation, and D, when evaluated $\left(\cosh x = \frac{e^{x} + e^{-x}}{2}\right)$ $\frac{e^{-x}}{2}$, sinh $x = \frac{e^{x}-e^{-}}{2}$ $\left(\frac{e}{2}\right)$, is *e*. **E**
- 4. Move everything to one side and multiply by e^x to get $e^{2x} 7e^x + 12 = 0$. This factors to give $(e^x - 4)(e^x - 3) = 0$, therefore $x = \ln 4$, ln 3. Sum these to get ln 12. **D**
- 5. The formal definition of $f(x) = \ln x$ is the area under the curve $y = \frac{1}{x}$ $\frac{1}{x}$ from 1 to x. We are given area and asked for the x; therefore, this function is the inverse of $f(x) = \ln x$ which is $g(x) = e^x$. **C**
- 6. i. converges by ratio test. ii. does not converge because it is a geometric series with ratio > 1 . iii. is e times the alternating harmonic series which converges. iv. converges by ratio. v.does not converge by ratio test. vi. does not converge by integral test **C**
- 7. Using ratio test: $\lim \frac{(x^{n+1}2^{n+1}(n+1)^{n+1})}{(2^{n+1}(n+1))}$ $\frac{1+1}{(3^{n+1}(n+1)!)} \cdot \frac{3^n}{x^n 2^n}$ $\frac{3^n n!}{x^n 2^n n^n} = \lim_{n \to \infty} \left(\frac{2}{3^n}\right)$ $\left(\frac{2x}{3}\right)\left(\frac{n}{2}\right)$ $\frac{+1}{n}\big)^n = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n$ $\frac{2x}{3}\left(1+\frac{1}{n}\right)$ $\left(\frac{1}{n}\right)^n$ Notice that the second part equals e. We have $\left| \frac{2}{\epsilon} \right|$ $\left|\frac{2x}{3}\right)e\right|$ < 1 \Rightarrow $|x|$ < $\frac{3}{2e}$ $rac{3}{2e}$. **D**
- 8. Take the derivative and set equal to 0: $\ln f = \frac{1}{x}$ $\frac{1}{x}$ ln $x \implies f' = f\left(\frac{1}{x^2}\right)$ x^2 $\mathbf{1}$ $\frac{1}{x^2}$ ln x $= 0$. Solving gives $x = e$ as the only solution, with f increasing beforehand and decreasing afterwards. Therefore, the answer is $f(e) = e^{\frac{1}{e}}$. **D**

9. Using the equation for continuous interest, we have $3P = Pe^{Rt}$. Cancel the P's and take the natural logarithm of both sides to get $\ln 3 = Rt \implies t = \frac{1}{x}$ $\frac{13}{R}$. **A**

10. Convert the sum into the form of $f(a + i\Delta x)\Delta x$, where $\Delta x = \frac{b}{2}$ $\frac{-a}{n}$. Multiply and divide the bottom by *n* to get $\lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{n}$ $\frac{1}{n} \cdot \frac{3}{1+}$ $1 + \frac{i}{n}$ \boldsymbol{n} n $\frac{n}{i-1}$. $\frac{3}{i}$. Clearly, our $f(x) = \frac{3}{x}$ $\frac{3}{x}$, $a = 1$, and $b = 2$. This Riemann sum becomes the integral $\int_{1}^{2} \frac{3}{u}$ $\int_{1}^{2} \frac{3}{x} dx = 3 \ln 2.$ A

- 11. With $u = \ln(\ln x)$, $du = \frac{1}{\ln x}$ $\frac{1}{\ln x} \cdot \frac{1}{x}$ $\frac{1}{x}$, our integral is now $\int_1^{\infty} u^{-1}$ $\int_{1}^{\infty} u^{-3/2} du = -2 \left(\lim_{a \to \infty} a^{-\frac{1}{2}} \right)$ $\overline{\mathbf{c}}$ $1^{-\frac{1}{2}}$ = 2. **E**
- 12. Using the identity $\cosh^2 t \sinh^2 t = 1$, $\sinh t = \sqrt{3}$. $\sinh 2t = 2 \sinh t \cosh t = 4\sqrt{3}$. Alternatively, this can be solved by knowing the expressions for the hyperbolic trig functions and doing some manipulations. **C**
- $13. = \frac{1}{n}$ $\mathbf{1}$ $\frac{1}{n}\left[\ln\frac{1}{2n}+\ln\frac{2}{2n}+\ln\frac{3}{2n}+\cdots+\ln\frac{n}{2n}\right]\Rightarrow\lim_{n\to\infty}\sum_{i=1}^{n}2^{\frac{1}{n}}$ $\frac{5}{n}$ ln $\left(\frac{5}{n}\right)$ $\frac{n}{i=1} 2 \frac{(.5)}{n} \ln \left(\frac{.5i}{n} \right)$ i $2 \int_0^3 \ln x \, dx = 2(.5 \ln .5 - .5) - (0) = \ln .5 - 1 = -\ln 2 - 1.$ A
- 14. Using the formula for exponential growth/decay, we have $80 = 100e^{r(1)} \Rightarrow r = \ln 4/5$. To find half-life, we solve $.5 = e^{(\ln \frac{4}{5})(t)} \Rightarrow t = \frac{\ln \frac{2}{5}}{14}$ $\ln\frac{4}{5}$ $=\frac{1}{1}$ $\frac{\ln 2}{\ln 1.25} = \log_{1.25} 2.$ **B**
- 15. Solving the differential equation, we get $\frac{dy}{y} = dx \implies \ln|y| = x + C \implies y = \pm Ce^x$. Plugging in the point given (0, 0), we find that $C = 0$, so $y = 0$ is the only function that satisfies the conditions. **B**
- 16. $V = \pi \int_{-\infty}^{0} (e^{x})^{2}$ $\int_{-\infty}^{0} (e^{x})^{2} dx = \frac{\pi}{2}$ $\frac{\pi}{2} (e^{2(0)} - \lim_{a \to \infty} e^{2(-\infty)}) = \pi/2$ **B**
- 17. $e \approx 2.71828182845904$ The 10th digit after the decimal point is 4. There are several e mnemonics that can assist in memorizing the digits **C**
- 18. We have $\frac{dP(t)}{dt} = kP(t)\left(1 \frac{P}{50}\right)$ 5 5 $\frac{3000}{1+c e^{-kt}}$. Plugging in the two givens, we get $C = 4, -k = \frac{1}{2}$ $\frac{1}{2}$ ln $\frac{1}{6}$. Therefore, $P(4) = \frac{5}{14}$ $1+4\left(\frac{1}{2}\right)$ $\frac{1}{6}$)² 5 $1+\frac{1}{2}$ 9 $= 4500$. **C**
- 19. Maximize the derivative: $\frac{d^2}{dx^2}$ dt^2 $\overline{\mathbf{c}}$ $\frac{R P(t)}{5000} = 0 \implies P(t) = 2500$. The derivative is concave down, so this is a max. **B**

20. Take the natural log of both sides to get $\ln L = \lim_{x\to\infty} \frac{\ln(1+2e^x)}{x}$ $\frac{42e}{x}$. Apply L'Hospital's rule to get $2e^{x}$ $\mathbf{1}$ $\frac{2e^{x}}{1}$. The ratio of the coefficients is 1, giving us $\ln L = 1 \implies L = e$. **B**

21. Using Newton's second law, we have $mg - kv = ma \implies 50 - kv = 5\frac{d}{d}$ $\frac{dv}{dt}$. Solve the differential equation to get $v = \frac{1}{b}$ $\frac{1}{k}$ $\left(50 - Ce^{-\frac{kt}{5}}\right)$. Plug in $v(0)$ to get $C = 50$, and plug in $v(\ln 2)$ to get $k = 5$. Therefore, $v(\ln 5) = \frac{1}{5}$ $\frac{1}{5}\left(50-50e^{-\frac{5}{5}}\right)$ $\frac{5}{5}$ ln 5) = $\frac{1}{5}$ $\frac{1}{5}(50-10)=8.$ A

- 22. Derive y with respect to x and plug in to get $k^3 e^{kx} k^2 e^{kx} 2ke^{kx} + 2e^{kx} = 0$. e^k cannot equal 0, so cancel and solve the cubic. $k = \pm \sqrt{2}$, 1. The product of these is -2. **C**
- 23. Change from rectangular to polar form: $2 + 2i = 2\sqrt{2} \left(\frac{1}{\epsilon} \right)$ $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}i$ = $2\sqrt{2}\left(e^{i\frac{\pi}{4}}\right)$ $\frac{\pi}{4}$ = $e^{3 \ln \sqrt{2} + i \frac{\pi}{4}}$. Therefore, $ab = \frac{3}{2}$ $\frac{3\pi}{4}$ ln $\sqrt{2}$. **D**
- 24. Expand e^{x^2} to get $\left(1+x^2+\frac{x^4}{2!}\right)$ $\frac{x^{4}}{2!} + \cdots$ - x^{2} $4x^4$ x^4 $\frac{x^4}{2!} + \frac{x^6}{3!}$ $\frac{x^2}{3!}$ + $4x^4$ $\mathbf{1}$ $\frac{1}{8} + \frac{x^2}{4(3)}$ $\frac{x^2}{4(3!)} + \cdots$. $\lim_{x\to 0} f(x) = \frac{1}{2}$ $\frac{1}{8}$. **A**

25.
$$
e^{\begin{bmatrix} 3 & 0 \ 0 & 4 \end{bmatrix}} = \sum_{i=0}^{\infty} \frac{1}{i!} \begin{bmatrix} 3 & 0 \ 0 & 4 \end{bmatrix}^i
$$
. It can be shown by induction that $\begin{bmatrix} 3 & 0 \ 0 & 4 \end{bmatrix}^i = \begin{bmatrix} 3^i & 0 \ 0 & 4^i \end{bmatrix}$. Therefore,
we have $e^{\begin{bmatrix} 3 & 0 \ 0 & 4 \end{bmatrix}} = \begin{bmatrix} \sum_{i=0}^{\infty} \frac{3^i}{i!} & 0 \\ 0 & \sum_{i=0}^{\infty} \frac{4^i}{i!} \end{bmatrix} = \begin{bmatrix} e^3 & 0 \ 0 & e^4 \end{bmatrix}$. **D**

- 26. Factor out a $\frac{1}{e}$ and multiply the top and bottom by e^{2x} to get $\frac{1}{e}$ $\frac{1}{e}\int_0^\infty \frac{e^2}{e^4}$ e^4 ∞ $\frac{1}{\omega}$ $\frac{e^{-\alpha x}}{e^{4x}+1}$. Using a u sub of $u = e^{2x}, \frac{d}{dx}$ $\frac{du}{2} = e^{2x}$, we get $\frac{1}{2e}$ $\frac{1}{2e} \int_1^{\infty} \frac{d}{u^2}$ \overline{u} ∞ $\int_{1}^{\infty} \frac{du}{u^2+1} = \frac{1}{2\epsilon}$ $\frac{1}{2e}$ (lim_{a→∞} arctan *a* – arctan 1) = $\frac{1}{2e}$ $rac{1}{2e}$ $\left(\frac{\pi}{4}\right)$ $\frac{n}{4}$. **B**
- 27. Plug in the Maclaurin series for e^x . We are looking for the x^{10} coefficient times 10!, because all others will become 0 when $f^{(10)}(0)$ is evaluated. This is $x^2\left(\frac{x^8}{8!}\right)$ $\left(\frac{x^8}{8!}\right) + 1\left(\frac{x^1}{10}\right)$ $\left(\frac{x^{10}}{10!}\right) = \frac{9}{10}$ $\frac{91}{10!} \chi^{10}$. **C**
- 28. The probability of loosing is $\left(1 \frac{1}{1,000,000}\right)$. The probability of loosing 1,000,000 times in a row is $\left(1-\frac{1}{1.200}\right)$ $\mathbf{1}$ 1,000,000 which is close to the limit definition of e^x . Therefore, the probability is approximately $1/e$. **B**

29. This sum equals $\sum_{n=0}^{\infty} \frac{e^n}{n^2}$ $3ⁿ$ e^{i} $\frac{1}{3}$ $\sum_{n=0}^{\infty} \frac{e^{ni\theta}}{2^n} = Re \left[\sum_{n=0}^{\infty} \left(\frac{e^{i\theta}}{2} \right)^n \right]$ which is an infinite geometry series. We can sum this as $1-\frac{e^{i}}{2}$ 3 $=\frac{3}{2 \cdot 22^{0}}$ $\frac{3}{3-\cos\theta-i\sin\theta}$. Multiply by the conjugate to isolate the real part and get $Re\left[\frac{3}{2}\right]$ $\left[\frac{3(3-\cos\theta+i\sin\theta)}{9-6\cos\theta+\cos^2\theta+\sin^2\theta}\right]=\frac{9}{10}$ $\frac{9-3\cos\theta}{10-6\cos\theta}$. Plugging in the given value, we get $\frac{9-3(\frac{1}{3})}{10-6(\frac{1}{3})}$ $\frac{1}{3}$ $10-6(\frac{1}{2})$ $\frac{37}{3}$ = 1. **E**

30. We can solve this by using Euler's formula. $i^{i^3} = i^{-i} = \left(e^{i\left(\frac{\pi}{2}\right)}\right)$ $\frac{n}{2})$ $\overline{}$ $= e^{\frac{\pi}{2}}$. **C**